Recognition of damaged letters based on neural network analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F13%3AA14017Z6" target="_blank" >RIV/61988987:17310/13:A14017Z6 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recognition of damaged letters based on neural network analysis
Popis výsledku v původním jazyce
This paper describes an experimental study based on the application of neural networks for pattern recognition of numbers stamped (imprinted) on ingots. The same task was also solved using fuzzy logic. The ability of all tested neural networks is sufficient to learn all the test patterns, as was demonstrated during experimental works. Unfortunately, amount of training patterns provided by Company KMC Group, s.r.o. were very small and they were very different from test samples. In the article, appropriate types of binarization were discussed so as to extract sufficient information regarding classification via neural networks. There were the optimization of the training set proposed based on the training set analysis. Next, we also proposed way of optimization of parameters belonging to adaptation rules of used neural networks. All experimental results were mutually compared in conclusion.
Název v anglickém jazyce
Recognition of damaged letters based on neural network analysis
Popis výsledku anglicky
This paper describes an experimental study based on the application of neural networks for pattern recognition of numbers stamped (imprinted) on ingots. The same task was also solved using fuzzy logic. The ability of all tested neural networks is sufficient to learn all the test patterns, as was demonstrated during experimental works. Unfortunately, amount of training patterns provided by Company KMC Group, s.r.o. were very small and they were very different from test samples. In the article, appropriate types of binarization were discussed so as to extract sufficient information regarding classification via neural networks. There were the optimization of the training set proposed based on the training set analysis. Next, we also proposed way of optimization of parameters belonging to adaptation rules of used neural networks. All experimental results were mutually compared in conclusion.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mendel 2013
ISBN
978-80-214-4755-4
ISSN
1803-3814
e-ISSN
—
Počet stran výsledku
6
Strana od-do
209-214
Název nakladatele
Brno Univerzity of Technology
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
26. 6. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—