Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Recognition of damaged letters based on neural network analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F13%3AA14017Z6" target="_blank" >RIV/61988987:17310/13:A14017Z6 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Recognition of damaged letters based on neural network analysis

  • Popis výsledku v původním jazyce

    This paper describes an experimental study based on the application of neural networks for pattern recognition of numbers stamped (imprinted) on ingots. The same task was also solved using fuzzy logic. The ability of all tested neural networks is sufficient to learn all the test patterns, as was demonstrated during experimental works. Unfortunately, amount of training patterns provided by Company KMC Group, s.r.o. were very small and they were very different from test samples. In the article, appropriate types of binarization were discussed so as to extract sufficient information regarding classification via neural networks. There were the optimization of the training set proposed based on the training set analysis. Next, we also proposed way of optimization of parameters belonging to adaptation rules of used neural networks. All experimental results were mutually compared in conclusion.

  • Název v anglickém jazyce

    Recognition of damaged letters based on neural network analysis

  • Popis výsledku anglicky

    This paper describes an experimental study based on the application of neural networks for pattern recognition of numbers stamped (imprinted) on ingots. The same task was also solved using fuzzy logic. The ability of all tested neural networks is sufficient to learn all the test patterns, as was demonstrated during experimental works. Unfortunately, amount of training patterns provided by Company KMC Group, s.r.o. were very small and they were very different from test samples. In the article, appropriate types of binarization were discussed so as to extract sufficient information regarding classification via neural networks. There were the optimization of the training set proposed based on the training set analysis. Next, we also proposed way of optimization of parameters belonging to adaptation rules of used neural networks. All experimental results were mutually compared in conclusion.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Mendel 2013

  • ISBN

    978-80-214-4755-4

  • ISSN

    1803-3814

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    209-214

  • Název nakladatele

    Brno Univerzity of Technology

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    26. 6. 2013

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku