On multidimensional Diophantine approximation of algebraic numbers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F17%3AA1701LK7" target="_blank" >RIV/61988987:17310/17:A1701LK7 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jnt.2016.07.002" target="_blank" >http://dx.doi.org/10.1016/j.jnt.2016.07.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jnt.2016.07.002" target="_blank" >10.1016/j.jnt.2016.07.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On multidimensional Diophantine approximation of algebraic numbers
Popis výsledku v původním jazyce
In this article we develop algorithms for solving the dual problems of approximating linear forms and of simultaneous approximation in number fields F. Using earlier ideas for computing independent units by Buchmann, Pethő and later Pohst we construct sequences of suitable modules in F and special elements ? contained in them. The most important ingredient in our methods is the application of the LLL-reduction procedure to the bases of those modules. For LLL-reduced bases we derive improved bounds on the sizes of the basis elements. From those bounds it is quite straightforward to show that the sequence of coefficient vectors (x1,...,xn) of the presentation of ? in the module basis becomes periodic. We can show that the approximations which we obtain are close to being optimal. Moreover, it is periodic on bases of real number fields. Thus our algorithm can be considered as a generalization, within the framework of number fields, of the continued fraction algorithm.
Název v anglickém jazyce
On multidimensional Diophantine approximation of algebraic numbers
Popis výsledku anglicky
In this article we develop algorithms for solving the dual problems of approximating linear forms and of simultaneous approximation in number fields F. Using earlier ideas for computing independent units by Buchmann, Pethő and later Pohst we construct sequences of suitable modules in F and special elements ? contained in them. The most important ingredient in our methods is the application of the LLL-reduction procedure to the bases of those modules. For LLL-reduced bases we derive improved bounds on the sizes of the basis elements. From those bounds it is quite straightforward to show that the sequence of coefficient vectors (x1,...,xn) of the presentation of ? in the module basis becomes periodic. We can show that the approximations which we obtain are close to being optimal. Moreover, it is periodic on bases of real number fields. Thus our algorithm can be considered as a generalization, within the framework of number fields, of the continued fraction algorithm.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
J NUMBER THEORY
ISSN
0022-314X
e-ISSN
—
Svazek periodika
171
Číslo periodika v rámci svazku
Únor
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
27
Strana od-do
422-448
Kód UT WoS článku
000386418700023
EID výsledku v databázi Scopus
2-s2.0-84990866189