Enhanced ensemble-based classifier with boosting for pattern recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F17%3AA1801NAQ" target="_blank" >RIV/61988987:17310/17:A1801NAQ - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0096300317302710" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0096300317302710</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2017.04.019" target="_blank" >10.1016/j.amc.2017.04.019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhanced ensemble-based classifier with boosting for pattern recognition
Popis výsledku v původním jazyce
The aim of the article is a proposal of a classifier based on neural networks that will be applicable in machine digitization of incomplete and inaccurate data or data containing noise for the purpose of their classification (pattern recognition). The article is focused on the possibility of increasing the efficiency of the algorithms via their appropriate combination, and particularly increasing their reliability and reducing their time demands. Time demands do not mean runtime, nor its development, but time demands of applying the algorithm to a particular problem domain. In other words, the amount of professional labour that is needed for such an implementation. The article aims at methods from the field of pattern recognition, which primarily means various types of neural networks. The proposed approaches are verified experimentally.
Název v anglickém jazyce
Enhanced ensemble-based classifier with boosting for pattern recognition
Popis výsledku anglicky
The aim of the article is a proposal of a classifier based on neural networks that will be applicable in machine digitization of incomplete and inaccurate data or data containing noise for the purpose of their classification (pattern recognition). The article is focused on the possibility of increasing the efficiency of the algorithms via their appropriate combination, and particularly increasing their reliability and reducing their time demands. Time demands do not mean runtime, nor its development, but time demands of applying the algorithm to a particular problem domain. In other words, the amount of professional labour that is needed for such an implementation. The article aims at methods from the field of pattern recognition, which primarily means various types of neural networks. The proposed approaches are verified experimentally.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPL MATH COMPUT
ISSN
0096-3003
e-ISSN
—
Svazek periodika
310
Číslo periodika v rámci svazku
OCT 1 2017
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
1-14
Kód UT WoS článku
000402488400001
EID výsledku v databázi Scopus
2-s2.0-85018275584