Comparison of Nature-Inspired Population-Based Algorithms on Continuous Optimisation Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F19%3AA2001T2N" target="_blank" >RIV/61988987:17310/19:A2001T2N - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2210650218301536" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2210650218301536</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.swevo.2019.01.006" target="_blank" >10.1016/j.swevo.2019.01.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of Nature-Inspired Population-Based Algorithms on Continuous Optimisation Problems
Popis výsledku v původním jazyce
Nine nature-inspired algorithms are compared with four advanced adaptive differential evolution (DE) variants, the classic DE and the blind randomsearch on two benchmark sets. One of the benchmark sets is the CEC 2011 collection of 22 real-world optimization problems, the latter is the suite of30 artificial optimization problems defined for the competition of the algorithms within CEC 2014. The results of the experiments demonstrate the superiority of the adaptive DE variants both on the real-world problems and the artificial CEC 2014 test suite at all the levels of dimension (10, 30, and50). Some of the nature-inspired algorithms perform even worse than the blind random search. The efficiency of the classic DE is comparable with the better performing nature-inspired methods. The results entitle to form a recommendation for practitioners: Do not propose a new original algorithm but select from the optimization algorithms supported by thorough researchand good ranking at international competitions of optimization algorithms.
Název v anglickém jazyce
Comparison of Nature-Inspired Population-Based Algorithms on Continuous Optimisation Problems
Popis výsledku anglicky
Nine nature-inspired algorithms are compared with four advanced adaptive differential evolution (DE) variants, the classic DE and the blind randomsearch on two benchmark sets. One of the benchmark sets is the CEC 2011 collection of 22 real-world optimization problems, the latter is the suite of30 artificial optimization problems defined for the competition of the algorithms within CEC 2014. The results of the experiments demonstrate the superiority of the adaptive DE variants both on the real-world problems and the artificial CEC 2014 test suite at all the levels of dimension (10, 30, and50). Some of the nature-inspired algorithms perform even worse than the blind random search. The efficiency of the classic DE is comparable with the better performing nature-inspired methods. The results entitle to form a recommendation for practitioners: Do not propose a new original algorithm but select from the optimization algorithms supported by thorough researchand good ranking at international competitions of optimization algorithms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Swarm and Evolutionary Computation
ISSN
2210-6502
e-ISSN
—
Svazek periodika
50
Číslo periodika v rámci svazku
NOV2019
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000497252300028
EID výsledku v databázi Scopus
2-s2.0-85061284824