On the x-coordinates of Pell equations which are k-generalized Fibonacci numbers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F20%3AA210248I" target="_blank" >RIV/61988987:17310/20:A210248I - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0022314X19302598" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022314X19302598</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jnt.2019.07.006" target="_blank" >10.1016/j.jnt.2019.07.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the x-coordinates of Pell equations which are k-generalized Fibonacci numbers
Popis výsledku v původním jazyce
For an integer k >= 2, let {F-n(k)}(n >= 2-k) be the k-generalized Fibonacci sequence which starts with 0, ..., 0, 1 (a total of k terms) and for which each term afterwards is the sum of the k preceding terms. In this paper, for an integer d >= 2 which is square-free, we show that there is at most one value of the positive integer x participating in the Pell equation x(2) - dy(2) = +/- 1, which is a k-generalized Fibonacci number, with a couple of parametric exceptions which we completely characterize. This paper extends previous work from [18] for the case k = 2 and [17] for the case k = 3.
Název v anglickém jazyce
On the x-coordinates of Pell equations which are k-generalized Fibonacci numbers
Popis výsledku anglicky
For an integer k >= 2, let {F-n(k)}(n >= 2-k) be the k-generalized Fibonacci sequence which starts with 0, ..., 0, 1 (a total of k terms) and for which each term afterwards is the sum of the k preceding terms. In this paper, for an integer d >= 2 which is square-free, we show that there is at most one value of the positive integer x participating in the Pell equation x(2) - dy(2) = +/- 1, which is a k-generalized Fibonacci number, with a couple of parametric exceptions which we completely characterize. This paper extends previous work from [18] for the case k = 2 and [17] for the case k = 3.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-02804S" target="_blank" >GA17-02804S: Vlastnosti číselných posloupností a jejich aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
J NUMBER THEORY
ISSN
0022-314X
e-ISSN
—
Svazek periodika
207
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
40
Strana od-do
156-195
Kód UT WoS článku
000492451200010
EID výsledku v databázi Scopus
2-s2.0-85071474866