Harris Hawks Optimisation: Using of an Archive
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F21%3AA2202A0W" target="_blank" >RIV/61988987:17310/21:A2202A0W - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85117512842&origin=resultslist&sort=plf-f&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85117512842&origin=resultslist&sort=plf-f&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-87986-0_37" target="_blank" >10.1007/978-3-030-87986-0_37</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Harris Hawks Optimisation: Using of an Archive
Popis výsledku v původním jazyce
This paper proposes an enhanced variant of the novel and popular Harris Hawks Optimisation (HHO) method. The original HHO algorithm was studied in many research projects, and a lot of hybrid (cooperative) variants of HHO was proposed. In this research study, an advanced HHO algorithm with an archive of the old solutions is proposed (HHOA). The proposed method is experimentally compared with the original HHO algorithm on a set of 22 real-world problems (CEC 2011). The results illustrate the superiority of HHOA because it outperforms HHO significantly in 20 out of 22 problems, and it is never significantly worse. Four well-known nature-based algorithms were employed to compare the efficiency of the proposed algorithm. HHOA achieves the best results in overall statistical comparison. A more detailed comparison shows that HHOA achieves the best results in half real-world problems, and it is never the worst-performing method. A newly employed archive of old solutions significantly increases the performance of the original HHO algorithm.
Název v anglickém jazyce
Harris Hawks Optimisation: Using of an Archive
Popis výsledku anglicky
This paper proposes an enhanced variant of the novel and popular Harris Hawks Optimisation (HHO) method. The original HHO algorithm was studied in many research projects, and a lot of hybrid (cooperative) variants of HHO was proposed. In this research study, an advanced HHO algorithm with an archive of the old solutions is proposed (HHOA). The proposed method is experimentally compared with the original HHO algorithm on a set of 22 real-world problems (CEC 2011). The results illustrate the superiority of HHOA because it outperforms HHO significantly in 20 out of 22 problems, and it is never significantly worse. Four well-known nature-based algorithms were employed to compare the efficiency of the proposed algorithm. HHOA achieves the best results in overall statistical comparison. A more detailed comparison shows that HHOA achieves the best results in half real-world problems, and it is never the worst-performing method. A newly employed archive of old solutions significantly increases the performance of the original HHO algorithm.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Artificial Intelligence 12854
ISBN
978-303087985-3
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
9
Strana od-do
415-423
Název nakladatele
Springer
Místo vydání
Cham, Switzerland
Místo konání akce
Zakopane, Polsko
Datum konání akce
20. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—