What is the cost of privacy?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F22%3AA2302FQL" target="_blank" >RIV/61988987:17310/22:A2302FQL - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-08974-9_55#citeas" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-08974-9_55#citeas</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-08974-9_55" target="_blank" >10.1007/978-3-031-08974-9_55</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
What is the cost of privacy?
Popis výsledku v původním jazyce
Grade research has to be replicable, thus the used data need to be publicly available. Speaking, e.g., about object detection task, where image data for autonomous driving also contain privacy information such as faces and license plates, the publication of data may be harmful to captured people. The solution to the moral dilemma is to anonymize the data. In this study, our aim is to investigate the effect of various anonymization techniques on the performance of algorithms that use such data. We discuss anonymization methods that remove and replace privacy data and select three methods to replace the privacy data: blurring, permutation, and replacing the area with a constant value. We adopted the Cityscapes dataset from which we extracted areas containing privacy information and are the manner of the anonymization methods. Our benchmark involves three famous object detectors: YOLOv3, Mask R-CNN with ResNet-50 backbone, and Mask R-CNN with Swin-T backbone. The results show that the impact of anonymization methods on the performance is negligible and the impact is similar for both convolutional-based and transformer-based backbones.
Název v anglickém jazyce
What is the cost of privacy?
Popis výsledku anglicky
Grade research has to be replicable, thus the used data need to be publicly available. Speaking, e.g., about object detection task, where image data for autonomous driving also contain privacy information such as faces and license plates, the publication of data may be harmful to captured people. The solution to the moral dilemma is to anonymize the data. In this study, our aim is to investigate the effect of various anonymization techniques on the performance of algorithms that use such data. We discuss anonymization methods that remove and replace privacy data and select three methods to replace the privacy data: blurring, permutation, and replacing the area with a constant value. We adopted the Cityscapes dataset from which we extracted areas containing privacy information and are the manner of the anonymization methods. Our benchmark involves three famous object detectors: YOLOv3, Mask R-CNN with ResNet-50 backbone, and Mask R-CNN with Swin-T backbone. The results show that the impact of anonymization methods on the performance is negligible and the impact is similar for both convolutional-based and transformer-based backbones.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Information Processing and Management of Uncertainty in Knowledge-Based Systems
ISBN
978-3-031-08974-9
ISSN
18650929
e-ISSN
—
Počet stran výsledku
11
Strana od-do
696-706
Název nakladatele
Springer International Publishing
Místo vydání
Cham
Místo konání akce
Milano
Datum konání akce
11. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—