Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hybrid Adaptive Differential Evolution in Partitional Clustering

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F11%3AA12011VT" target="_blank" >RIV/61988987:17610/11:A12011VT - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hybrid Adaptive Differential Evolution in Partitional Clustering

  • Popis výsledku v původním jazyce

    The problem of optimal partitioning by minimizing pooled-within-variance of groups is addressed. Three state-of-the-art adaptive differential evolution algorithms are compared on four real-world data sets. A~novel hybrid differential evolution algorithm,including k-means algorithm for local search is proposed. The experimental comparison is done with either the plain adaptive differential evolution variants or the hybrid algorithms. Experimental results showed that hybrid algorithms are substantially better preforming when compared with plain differential evolution variants. Among hybrid variants, the competitive differential evolution appeared to be the most efficient.

  • Název v anglickém jazyce

    Hybrid Adaptive Differential Evolution in Partitional Clustering

  • Popis výsledku anglicky

    The problem of optimal partitioning by minimizing pooled-within-variance of groups is addressed. Three state-of-the-art adaptive differential evolution algorithms are compared on four real-world data sets. A~novel hybrid differential evolution algorithm,including k-means algorithm for local search is proposed. The experimental comparison is done with either the plain adaptive differential evolution variants or the hybrid algorithms. Experimental results showed that hybrid algorithms are substantially better preforming when compared with plain differential evolution variants. Among hybrid variants, the competitive differential evolution appeared to be the most efficient.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2011

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    MENDEL 2011 17th International Conference on Soft Computing

  • ISBN

    978-80-214-4302-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    1-8

  • Název nakladatele

    University of Technology

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    15. 6. 2011

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku