Hybrid Differential Evolution Algorithm for Optimal Clustering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F15%3AA1600S4B" target="_blank" >RIV/61988987:17610/15:A1600S4B - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hybrid Differential Evolution Algorithm for Optimal Clustering
Popis výsledku v původním jazyce
The problem of optimal non-hierarchical clustering is addressed. A new algorithm combining differential evolution and $k$-means is proposed and tested on eight well-known real-world data sets. The classification of objects to be optimized is encoded by the cluster centers in differential evolution (DE) algorithm. A~new efficient heuristic for this rearrangement was also proposed. The plain DE variants with and without the rearrangement were compared with corresponding hybrid k-means variants. The experimental results showed that hybrid variants with k-means algorithm are essentially more efficient than the non-hybrid ones. Compared to a standard k-means algorithm with restart, the new hybrid algorithm appeared more reliable and efficient, especially inmore difficult tasks. The results for TRW and VCR criterion were compared. Both criteria provided the same optimal partitions and no significant differences were found in efficiency of the algorithms using these criteria.
Název v anglickém jazyce
Hybrid Differential Evolution Algorithm for Optimal Clustering
Popis výsledku anglicky
The problem of optimal non-hierarchical clustering is addressed. A new algorithm combining differential evolution and $k$-means is proposed and tested on eight well-known real-world data sets. The classification of objects to be optimized is encoded by the cluster centers in differential evolution (DE) algorithm. A~new efficient heuristic for this rearrangement was also proposed. The plain DE variants with and without the rearrangement were compared with corresponding hybrid k-means variants. The experimental results showed that hybrid variants with k-means algorithm are essentially more efficient than the non-hybrid ones. Compared to a standard k-means algorithm with restart, the new hybrid algorithm appeared more reliable and efficient, especially inmore difficult tasks. The results for TRW and VCR criterion were compared. Both criteria provided the same optimal partitions and no significant differences were found in efficiency of the algorithms using these criteria.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPL SOFT COMPUT
ISSN
1568-4946
e-ISSN
—
Svazek periodika
35
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
502-512
Kód UT WoS článku
000360109900037
EID výsledku v databázi Scopus
2-s2.0-84937416053