1/kappa-homogeneous long solenoids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F16%3AA1701BJD" target="_blank" >RIV/61988987:17610/16:A1701BJD - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
čeština
Název v původním jazyce
1/kappa-homogeneous long solenoids
Popis výsledku v původním jazyce
We study nonmetric analogues of Vietoris solenoids. Let ? be an ordered continuum, and let p =?p1,p2,??p?=?p1,p2,?? be a sequence of positive integers. We define a natural inverse limit space S(?,p), where the first factor space is the nonmetric ?circle? obtained by identifying the endpoints of ?, and the nth factor space, n>1, consists of p1p2?pn?1 copies of ? laid end to end in a circle. We prove that for every cardinal ??1, there is an ordered continuum ? such that S(?,p) is 1/?-homogeneous; for ?>1, ? is built from copies of the long line. Our example with ?=2 provides a nonmetric answer to a question of Neumann-Lara, Pellicer-Covarrubias and Puga from 2005, and with ?=1 provides an example of a nonmetric homogeneous circle-like indecomposable continuum. We also show that for each uncountable cardinal ? and for each fixed p, there are 2^?-many 1/?-homogeneous solenoids of the form S(?,p) as varies over ordered continua of weight. Finally, we show that for every ordered continuum ? the shape of S(?,p) depends only on the equivalence class of p for a relation similar to one used to classify the additive subgroups of the rational numbers. Consequently, for each fixed ?, as p varies, there are exactly c-many different shapes, where c=2^? (and there are also exactly that many homeomorphism types) represented by S(?,p).
Název v anglickém jazyce
1/kappa-Homogeneous long solenoids
Popis výsledku anglicky
We study nonmetric analogues of Vietoris solenoids. Let ? be an ordered continuum, and let p =?p1,p2,??p?=?p1,p2,?? be a sequence of positive integers. We define a natural inverse limit space S(?,p), where the first factor space is the nonmetric ?circle? obtained by identifying the endpoints of ?, and the nth factor space, n>1, consists of p1p2?pn?1 copies of ? laid end to end in a circle. We prove that for every cardinal ??1, there is an ordered continuum ? such that S(?,p) is 1/?-homogeneous; for ?>1, ? is built from copies of the long line. Our example with ?=2 provides a nonmetric answer to a question of Neumann-Lara, Pellicer-Covarrubias and Puga from 2005, and with ?=1 provides an example of a nonmetric homogeneous circle-like indecomposable continuum. We also show that for each uncountable cardinal ? and for each fixed p, there are 2^?-many 1/?-homogeneous solenoids of the form S(?,p) as ? varies over ordered continua of weight ?. Finally, we show that for every ordered continuum ? the shape of S(?,p) depends only on the equivalence class of p for a relation similar to one used to classify the additive subgroups of the rational numbers. Consequently, for each fixed ?, as p varies, there are exactly c-many different shapes, where c=2^? (and there are also exactly that many homeomorphism types) represented by S(?,p).
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MONATSH MATH
ISSN
0026-9255
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
180
Stát vydavatele periodika
AT - Rakouská republika
Počet stran výsledku
20
Strana od-do
171-192
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—