Properties of invariant measures in dynamical systems with the shadowing propert
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F18%3AA2202EP7" target="_blank" >RIV/61988987:17610/18:A2202EP7 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/abs/properties-of-invariant-measures-in-dynamical-systems-with-the-shadowing-property/5C3CB849E07E5BD86FE5AE85714A575E#access-block" target="_blank" >https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/abs/properties-of-invariant-measures-in-dynamical-systems-with-the-shadowing-property/5C3CB849E07E5BD86FE5AE85714A575E#access-block</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/etds.2016.125" target="_blank" >10.1017/etds.2016.125</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Properties of invariant measures in dynamical systems with the shadowing propert
Popis výsledku v původním jazyce
For dynamical systems with the shadowing property, we provide a method of approximation of invariant measures by ergodic measures supported on odometers and their almost one-to-one extensions. For a topologically transitive system with the shadowing property, we show that ergodic measures supported on odometers are dense in the space of invariant measures, and then ergodic measures are generic in the space of invariant measures. We also show that for every and the collection of ergodic measures (supported on almost one-to-one extensions of odometers) with entropy between and is dense in the space of invariant measures with entropy at least . Moreover, if in addition the entropy function is upper semi-continuous, then, for every , ergodic measures with entropy are generic in the space of invariant measures with entropy at least .
Název v anglickém jazyce
Properties of invariant measures in dynamical systems with the shadowing propert
Popis výsledku anglicky
For dynamical systems with the shadowing property, we provide a method of approximation of invariant measures by ergodic measures supported on odometers and their almost one-to-one extensions. For a topologically transitive system with the shadowing property, we show that ergodic measures supported on odometers are dense in the space of invariant measures, and then ergodic measures are generic in the space of invariant measures. We also show that for every and the collection of ergodic measures (supported on almost one-to-one extensions of odometers) with entropy between and is dense in the space of invariant measures with entropy at least . Moreover, if in addition the entropy function is upper semi-continuous, then, for every , ergodic measures with entropy are generic in the space of invariant measures with entropy at least .
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ERGOD THEOR DYN SYST
ISSN
0143-3857
e-ISSN
—
Svazek periodika
38
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
28
Strana od-do
2257-2294
Kód UT WoS článku
000439984400011
EID výsledku v databázi Scopus
2-s2.0-85015150785