On d-approachability, entropy density and B-free shifts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F23%3A00561667" target="_blank" >RIV/67985556:_____/23:00561667 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/abs/on-bar-d-approachability-entropy-density-and-mathscr-b-free-shifts/F5D747D79D4C4ED5282AED0F63DDC8CA" target="_blank" >https://www.cambridge.org/core/journals/ergodic-theory-and-dynamical-systems/article/abs/on-bar-d-approachability-entropy-density-and-mathscr-b-free-shifts/F5D747D79D4C4ED5282AED0F63DDC8CA</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/etds.2021.167" target="_blank" >10.1017/etds.2021.167</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On d-approachability, entropy density and B-free shifts
Popis výsledku v původním jazyce
We study approximation schemes for shift spaces over a finite alphabet using (pseudo)metrics connected to Ornstein's (d) over bar metric. This leads to a class of shift spaces we call (d) over bar -approachable. A shift space is (d) over bar -approachable when its canonical sequence of Markov approximations converges to it also in the (d) over bar sense. We give a topological characterization of chain-mixing (d) over bar -approachable shift spaces. As an application we provide a new criterion for entropy density of ergodic measures. Entropy density of a shift space means that every invariant measure mu of such a shift space is the weak* limit of a sequence mu(n) of ergodic measures with the corresponding sequence of entropies h(mu) converging to h(mu) . We prove ergodic measures are entropy-dense for every shift space that can be approximated in the (d) over bar pseudometric by a sequence of transitive sofic shifts. This criterion can be applied to many examples that were beyond the reach of previously known techniques including hereditary B-free shifts and some minimal or proximal systems. The class of symbolic dynamical systems covered by our results includes also shift spaces where entropy density was established previously using the (almost) specification property.
Název v anglickém jazyce
On d-approachability, entropy density and B-free shifts
Popis výsledku anglicky
We study approximation schemes for shift spaces over a finite alphabet using (pseudo)metrics connected to Ornstein's (d) over bar metric. This leads to a class of shift spaces we call (d) over bar -approachable. A shift space is (d) over bar -approachable when its canonical sequence of Markov approximations converges to it also in the (d) over bar sense. We give a topological characterization of chain-mixing (d) over bar -approachable shift spaces. As an application we provide a new criterion for entropy density of ergodic measures. Entropy density of a shift space means that every invariant measure mu of such a shift space is the weak* limit of a sequence mu(n) of ergodic measures with the corresponding sequence of entropies h(mu) converging to h(mu) . We prove ergodic measures are entropy-dense for every shift space that can be approximated in the (d) over bar pseudometric by a sequence of transitive sofic shifts. This criterion can be applied to many examples that were beyond the reach of previously known techniques including hereditary B-free shifts and some minimal or proximal systems. The class of symbolic dynamical systems covered by our results includes also shift spaces where entropy density was established previously using the (almost) specification property.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ergodic Theory and Dynamical Systems
ISSN
0143-3857
e-ISSN
1469-4417
Svazek periodika
43
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
27
Strana od-do
943-970
Kód UT WoS článku
000755540400001
EID výsledku v databázi Scopus
2-s2.0-85124961285