On entropy of dynamical systems with almost specification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F16%3AA1701EL0" target="_blank" >RIV/61988987:17610/16:A1701EL0 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On entropy of dynamical systems with almost specification
Popis výsledku v původním jazyce
We construct a family of shift spaces with almost specification and multiple measures of maximal entropy. This answers a question from Climenhaga and Thompson [emph{Israel J. Math.} textbf{192} (2012), no. 2, 785--817]. Elaborating on our examples we prove that sufficient conditions for every shift factor of a shift space to be intrinsically ergodic given by Climenhaga and Thompson are in some sense best possible, moreover, the weak specification property neither implies intrinsic ergodicity, nor follows from almost specification. We also construct a dynamical system with the weak specification property, which does not have the almost specification property. We prove that the minimal points are dense in the support of any invariant measure of a system with the almost specification property. Furthermore, if a system with almost specification has an invariant measure with non-trivial support, then it also has uniform positive entropy over the support of any invariant measure and can not be minimal.
Název v anglickém jazyce
On entropy of dynamical systems with almost specification
Popis výsledku anglicky
We construct a family of shift spaces with almost specification and multiple measures of maximal entropy. This answers a question from Climenhaga and Thompson [emph{Israel J. Math.} textbf{192} (2012), no. 2, 785--817]. Elaborating on our examples we prove that sufficient conditions for every shift factor of a shift space to be intrinsically ergodic given by Climenhaga and Thompson are in some sense best possible, moreover, the weak specification property neither implies intrinsic ergodicity, nor follows from almost specification. We also construct a dynamical system with the weak specification property, which does not have the almost specification property. We prove that the minimal points are dense in the support of any invariant measure of a system with the almost specification property. Furthermore, if a system with almost specification has an invariant measure with non-trivial support, then it also has uniform positive entropy over the support of any invariant measure and can not be minimal.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ISR J MATH
ISSN
0021-2172
e-ISSN
—
Svazek periodika
213
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
IL - Stát Izrael
Počet stran výsledku
29
Strana od-do
475-503
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—