Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fuzzy preprocessing for semi-supervised image classification in modern industry

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F19%3AA2001ZSQ" target="_blank" >RIV/61988987:17610/19:A2001ZSQ - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fuzzy preprocessing for semi-supervised image classification in modern industry

  • Popis výsledku v původním jazyce

    We are focusing on image classification in industrial processing taking into account the most problematic issue of the processing: the lack of labeled data. Here, we are considering three datasets: the first one is an unsorted collection of all types of manufactured products and includes 100 images per class. The second one consists of products sorted into particular classes by a specialized employee and includes only ten images per class. The last one includes a massive volume of labeled images, but it is used only for the proposal validation. As the configuration is challenging for neural networks, we propose to use Image Represented by a Fuzzy Function in order to enrich original image information. We solve the task using various autoencoder architectures and prove that such the proposal increases the autoencoders success rate.

  • Název v anglickém jazyce

    Fuzzy preprocessing for semi-supervised image classification in modern industry

  • Popis výsledku anglicky

    We are focusing on image classification in industrial processing taking into account the most problematic issue of the processing: the lack of labeled data. Here, we are considering three datasets: the first one is an unsorted collection of all types of manufactured products and includes 100 images per class. The second one consists of products sorted into particular classes by a specialized employee and includes only ten images per class. The last one includes a massive volume of labeled images, but it is used only for the proposal validation. As the configuration is challenging for neural networks, we propose to use Image Represented by a Fuzzy Function in order to enrich original image information. We solve the task using various autoencoder architectures and prove that such the proposal increases the autoencoders success rate.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centrum pro výzkum a vývoj metod umělé intelligence v automobilovém průmyslu regionu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    15th International Work-Conference on Artificial Neural Networks

  • ISBN

    978-3-030-20517-1

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    3-13

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Gran Canaria

  • Datum konání akce

    12. 6. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku