Image entropy equalization: A novel preprocessing technique for image recognition tasks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020653" target="_blank" >RIV/62690094:18470/23:50020653 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0020025523011246" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025523011246</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2023.119539" target="_blank" >10.1016/j.ins.2023.119539</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Image entropy equalization: A novel preprocessing technique for image recognition tasks
Popis výsledku v původním jazyce
Image entropy is the metric used to represent a complexity of an image. This study considers the hypothesis that image entropy differences affect machine learning algorithms' performance. This paper proposes a novel preprocessing technique, image entropy equalization, to delete the image entropy differences. The goal is to transform all images into the same entropy. Such a process is implemented by editing all images into the same histogram. Image entropy equalization is evaluated by comparing the original and equalized images in various machine learning tasks. The main advantage of image entropy equalization is to improve the AUC score for one-class autoencoder (OCAE). This result gives a new hypothesis that using image entropy equalization could improve various studies using autoencoder (AE). In addition, the proposed method shows fair results for classification and regression tasks. On the other hand, the main challenges are that the equalization process depends on a reference histogram and is affected by diverse backgrounds.
Název v anglickém jazyce
Image entropy equalization: A novel preprocessing technique for image recognition tasks
Popis výsledku anglicky
Image entropy is the metric used to represent a complexity of an image. This study considers the hypothesis that image entropy differences affect machine learning algorithms' performance. This paper proposes a novel preprocessing technique, image entropy equalization, to delete the image entropy differences. The goal is to transform all images into the same entropy. Such a process is implemented by editing all images into the same histogram. Image entropy equalization is evaluated by comparing the original and equalized images in various machine learning tasks. The main advantage of image entropy equalization is to improve the AUC score for one-class autoencoder (OCAE). This result gives a new hypothesis that using image entropy equalization could improve various studies using autoencoder (AE). In addition, the proposed method shows fair results for classification and regression tasks. On the other hand, the main challenges are that the equalization process depends on a reference histogram and is affected by diverse backgrounds.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information sciences
ISSN
0020-0255
e-ISSN
1872-6291
Svazek periodika
647
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
"Article Number: 119539"
Kód UT WoS článku
001062138700001
EID výsledku v databázi Scopus
2-s2.0-85168424752