SHADOWING IS GENERIC ON VARIOUS ONE-DIMENSIONAL CONTINUA WITH A SPECIAL GEOMETRIC STRUCTURE
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA2101X5R" target="_blank" >RIV/61988987:17610/20:A2101X5R - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs12220-019-00280-6" target="_blank" >https://link.springer.com/article/10.1007%2Fs12220-019-00280-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12220-019-00280-6" target="_blank" >10.1007/s12220-019-00280-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SHADOWING IS GENERIC ON VARIOUS ONE-DIMENSIONAL CONTINUA WITH A SPECIAL GEOMETRIC STRUCTURE
Popis výsledku v původním jazyce
In the paper we use a special geometric structure of selected one-dimensional continua to prove that some stronger versions of the shadowing property are generic (or at least dense) for continuous maps acting on these spaces.Specifically, we prove that: (i) the periodic TS -bi-shadowing prop- erty, where TS means some class of continuous methods, is generic as well as the s-limit shadowing property is dense in the space of all con- tinuous maps (and all continuous surjective maps) of any topological graph; (ii) the TS -bi-shadowing property is generic as well as the s-limit shadowing property is dense in the space of all continuous maps of any dendrite; (iii) the TS -bi-shadowing property is generic in the space of all continuous maps of chainable continuum that can by approximated by arcs from the inside.The results of the paper extend ones obtained over the last few deca- des by various authors (see, e.g., [11, 13, 14, 16, 17, 21, 27, 31]) for both homeomorphisms and continuous maps of compact manifolds, including (in particular) an interval and a circle, which are the simplest examples of one-dimensional continua. Moreover, from a technical point of view our considerations are a continuation of those carried out in the earlier work [16].
Název v anglickém jazyce
SHADOWING IS GENERIC ON VARIOUS ONE-DIMENSIONAL CONTINUA WITH A SPECIAL GEOMETRIC STRUCTURE
Popis výsledku anglicky
In the paper we use a special geometric structure of selected one-dimensional continua to prove that some stronger versions of the shadowing property are generic (or at least dense) for continuous maps acting on these spaces.Specifically, we prove that: (i) the periodic TS -bi-shadowing prop- erty, where TS means some class of continuous methods, is generic as well as the s-limit shadowing property is dense in the space of all con- tinuous maps (and all continuous surjective maps) of any topological graph; (ii) the TS -bi-shadowing property is generic as well as the s-limit shadowing property is dense in the space of all continuous maps of any dendrite; (iii) the TS -bi-shadowing property is generic in the space of all continuous maps of chainable continuum that can by approximated by arcs from the inside.The results of the paper extend ones obtained over the last few deca- des by various authors (see, e.g., [11, 13, 14, 16, 17, 21, 27, 31]) for both homeomorphisms and continuous maps of compact manifolds, including (in particular) an interval and a circle, which are the simplest examples of one-dimensional continua. Moreover, from a technical point of view our considerations are a continuation of those carried out in the earlier work [16].
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geometric Analysis
ISSN
1559-002X
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
1836-1864
Kód UT WoS článku
000523561300028
EID výsledku v databázi Scopus
2-s2.0-85074017528