YOLO-ASC: You Only Look Once And See Contours
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA21021UC" target="_blank" >RIV/61988987:17610/20:A21021UC - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9207223" target="_blank" >https://ieeexplore.ieee.org/document/9207223</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IJCNN48605.2020.9207223" target="_blank" >10.1109/IJCNN48605.2020.9207223</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
YOLO-ASC: You Only Look Once And See Contours
Popis výsledku v původním jazyce
YOLO is a useful, one-stage tool for object detection and classification. In this paper, we consider the application of grocery product detection. The grocery stores have a significant amount of product classes, so it is beneficial to postpone the classification into a second, specialized neural network with a higher capacity. Extracting bounding boxes for a classification network is not precise enough as the detected area includes redundant information about the background. We propose YOLO-ASC, which, for rectangular-based objects, detects bounding boxes together with object contour using a quadrangular. This approach allows detecting objects more accurately and without the background. For the quadrangular detection functionality, YOLO-ASC shares the feature maps that are already present in the network, and therefore its inference time is almost identical to the original YOLO. YOLO reaches high detection precision by using YOLO apriori knowledge, anchors extracted from data. In this work, we present two experiments where we demonstrate that YOLO-ASC training converges faster due to the symbiosis between the bounding box detection and quadrangular detection. Finally, we propose a tool for generating synthetic datasets with quadrangular labels that is helpful for transfer learning.
Název v anglickém jazyce
YOLO-ASC: You Only Look Once And See Contours
Popis výsledku anglicky
YOLO is a useful, one-stage tool for object detection and classification. In this paper, we consider the application of grocery product detection. The grocery stores have a significant amount of product classes, so it is beneficial to postpone the classification into a second, specialized neural network with a higher capacity. Extracting bounding boxes for a classification network is not precise enough as the detected area includes redundant information about the background. We propose YOLO-ASC, which, for rectangular-based objects, detects bounding boxes together with object contour using a quadrangular. This approach allows detecting objects more accurately and without the background. For the quadrangular detection functionality, YOLO-ASC shares the feature maps that are already present in the network, and therefore its inference time is almost identical to the original YOLO. YOLO reaches high detection precision by using YOLO apriori knowledge, anchors extracted from data. In this work, we present two experiments where we demonstrate that YOLO-ASC training converges faster due to the symbiosis between the bounding box detection and quadrangular detection. Finally, we propose a tool for generating synthetic datasets with quadrangular labels that is helpful for transfer learning.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centrum pro výzkum a vývoj metod umělé intelligence v automobilovém průmyslu regionu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 International Joint Conference on Neural Networks (IJCNN)
ISBN
978-1-7281-6926-2
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
1-7
Název nakladatele
IEEE
Místo vydání
USA
Místo konání akce
Glasgow , United Kingdom
Datum konání akce
19. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—