Dist-YOLO: fast object detection with distance estimation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA2302C9E" target="_blank" >RIV/61988987:17610/22:A2302C9E - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2076-3417/12/3/1354/html" target="_blank" >https://www.mdpi.com/2076-3417/12/3/1354/html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app12031354" target="_blank" >10.3390/app12031354</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dist-YOLO: fast object detection with distance estimation
Popis výsledku v původním jazyce
We present a scheme of how YOLO can be improved in order to predict the absolute distance of objects using only information from a monocular camera. It is fully integrated into the original architecture by extending the prediction vectors, sharing the backbone’s weights with the bounding box regressor, and updating the original loss function by a part responsible for distance estimation. We designed two ways of handling the distance, class-agnostic and class-aware, proving class-agnostic creates smaller prediction vectors than class-aware and achieves better results. We demonstrate that the subtasks of object detection and distance measurement are in synergy, resulting in the increase of the precision of the original bounding box functionality. We show that using the KITTI dataset, the proposed scheme yields a mean relative error of 11% considering all eight classes and the distance range within [0, 150] m, which makes the solution highly competitive with existing approaches. Finally, we show that the inference speed is identical to the unmodified YOLO, 45 frames per second.
Název v anglickém jazyce
Dist-YOLO: fast object detection with distance estimation
Popis výsledku anglicky
We present a scheme of how YOLO can be improved in order to predict the absolute distance of objects using only information from a monocular camera. It is fully integrated into the original architecture by extending the prediction vectors, sharing the backbone’s weights with the bounding box regressor, and updating the original loss function by a part responsible for distance estimation. We designed two ways of handling the distance, class-agnostic and class-aware, proving class-agnostic creates smaller prediction vectors than class-aware and achieves better results. We demonstrate that the subtasks of object detection and distance measurement are in synergy, resulting in the increase of the precision of the original bounding box functionality. We show that using the KITTI dataset, the proposed scheme yields a mean relative error of 11% considering all eight classes and the distance range within [0, 150] m, which makes the solution highly competitive with existing approaches. Finally, we show that the inference speed is identical to the unmodified YOLO, 45 frames per second.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centrum pro výzkum a vývoj metod umělé intelligence v automobilovém průmyslu regionu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences
ISSN
2076-3417
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
1-13
Kód UT WoS článku
000754896100001
EID výsledku v databázi Scopus
2-s2.0-85123507680