Time Series: How Unusual Local Behavior Can Be Recognized Using Fuzzy Modeling Methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F21%3AA2202DMF" target="_blank" >RIV/61988987:17610/21:A2202DMF - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-45619-1_13" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-45619-1_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-45619-1_13" target="_blank" >10.1007/978-3-030-45619-1_13</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Time Series: How Unusual Local Behavior Can Be Recognized Using Fuzzy Modeling Methods
Popis výsledku v původním jazyce
In this paper, we address the problem of automatic recognition of structural breaks in time series. The former are unexpected shifts of the course or sudden change of the volatility of time series. Structural breaks can be caused, e.g., by changes in the organization of a company, global or local economic development, global shifts in capital and labor, various kinds of outer influences such as discovery or depletion of natural resources, etc. Structural breaks in time series are usually detected using statistical methods. In this paper, we suggest using special non-statistical techniques of fuzzy modeling. We will employ two classes of them, namely the fuzzy transform and selected methods of Fuzzy Natural Logic. The fuzzy transform enables us to estimate the average slope of time series in an area characterized by a fuzzy set. The slope is then evaluated by evaluative linguistic expressions, which enables us to identify intervals with monotonous behavior and, consequently, identify structural breaks. Our method is simple, transparent, and computationally effective.
Název v anglickém jazyce
Time Series: How Unusual Local Behavior Can Be Recognized Using Fuzzy Modeling Methods
Popis výsledku anglicky
In this paper, we address the problem of automatic recognition of structural breaks in time series. The former are unexpected shifts of the course or sudden change of the volatility of time series. Structural breaks can be caused, e.g., by changes in the organization of a company, global or local economic development, global shifts in capital and labor, various kinds of outer influences such as discovery or depletion of natural resources, etc. Structural breaks in time series are usually detected using statistical methods. In this paper, we suggest using special non-statistical techniques of fuzzy modeling. We will employ two classes of them, namely the fuzzy transform and selected methods of Fuzzy Natural Logic. The fuzzy transform enables us to estimate the average slope of time series in an area characterized by a fuzzy set. The slope is then evaluated by evaluative linguistic expressions, which enables us to identify intervals with monotonous behavior and, consequently, identify structural breaks. Our method is simple, transparent, and computationally effective.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-13951S" target="_blank" >GA18-13951S: Nové přístupy k modelování finančních časových řad pomocí soft-computingu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Statistical and Fuzzy Approaches to Data Processing, with Applications to Econometrics and Other Areas
ISBN
978-3-030-45618-4
Počet stran výsledku
21
Strana od-do
157-177
Počet stran knihy
265
Název nakladatele
Springer
Místo vydání
Cham
Kód UT WoS kapitoly
—