Selection of Keypoints in 2D Images Using F-Transform
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA2302G4A" target="_blank" >RIV/61988987:17610/22:A2302G4A - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-08974-9_33" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-08974-9_33</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-08974-9_33" target="_blank" >10.1007/978-3-031-08974-9_33</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Selection of Keypoints in 2D Images Using F-Transform
Popis výsledku v původním jazyce
We focus on a new fast and robust algorithm for selecting keypoints in 2D images using the following techniques: image regularization, selection of spaces with closeness, and design of the corresponding graph Laplacians. Then, the representative keypoints are local extrema in the image after the Laplacian operator is applied. The convolution kernels, used for regularization, are extracted from the uniform partition of the image domain, and the graph Laplacian is constructed using the theory of F0-transforms. Empirically, we show that sequences of F-transform kernels that correspond to different regularization levels share the property that they do not introduce new local extrema into the image under convolution. This justifies the computation of keypoints as points where local extrema are reached and allows them to be classified according to the values of the local extrema. We show that the extracted key points are representative in the sense that they allow a good approximate reconstruction of the original image from the calculated components of the F-transform taken from different convolutions. In addition, we show that the proposed algorithm is resistant to Gaussian noise.
Název v anglickém jazyce
Selection of Keypoints in 2D Images Using F-Transform
Popis výsledku anglicky
We focus on a new fast and robust algorithm for selecting keypoints in 2D images using the following techniques: image regularization, selection of spaces with closeness, and design of the corresponding graph Laplacians. Then, the representative keypoints are local extrema in the image after the Laplacian operator is applied. The convolution kernels, used for regularization, are extracted from the uniform partition of the image domain, and the graph Laplacian is constructed using the theory of F0-transforms. Empirically, we show that sequences of F-transform kernels that correspond to different regularization levels share the property that they do not introduce new local extrema into the image under convolution. This justifies the computation of keypoints as points where local extrema are reached and allows them to be classified according to the values of the local extrema. We show that the extracted key points are representative in the sense that they allow a good approximate reconstruction of the original image from the calculated components of the F-transform taken from different convolutions. In addition, we show that the proposed algorithm is resistant to Gaussian noise.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Information Processing and Management of Uncertainty in Knowledge-Based Systems
ISBN
978-3-031-08974-9
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
418-430
Název nakladatele
Springer
Místo vydání
—
Místo konání akce
Milano
Datum konání akce
11. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—