Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Selection of Keypoints in 2D Images Using F-Transform

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA2302G4A" target="_blank" >RIV/61988987:17610/22:A2302G4A - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-08974-9_33" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-08974-9_33</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-08974-9_33" target="_blank" >10.1007/978-3-031-08974-9_33</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Selection of Keypoints in 2D Images Using F-Transform

  • Popis výsledku v původním jazyce

    We focus on a new fast and robust algorithm for selecting keypoints in 2D images using the following techniques: image regularization, selection of spaces with closeness, and design of the corresponding graph Laplacians. Then, the representative keypoints are local extrema in the image after the Laplacian operator is applied. The convolution kernels, used for regularization, are extracted from the uniform partition of the image domain, and the graph Laplacian is constructed using the theory of F0-transforms. Empirically, we show that sequences of F-transform kernels that correspond to different regularization levels share the property that they do not introduce new local extrema into the image under convolution. This justifies the computation of keypoints as points where local extrema are reached and allows them to be classified according to the values of the local extrema. We show that the extracted key points are representative in the sense that they allow a good approximate reconstruction of the original image from the calculated components of the F-transform taken from different convolutions. In addition, we show that the proposed algorithm is resistant to Gaussian noise.

  • Název v anglickém jazyce

    Selection of Keypoints in 2D Images Using F-Transform

  • Popis výsledku anglicky

    We focus on a new fast and robust algorithm for selecting keypoints in 2D images using the following techniques: image regularization, selection of spaces with closeness, and design of the corresponding graph Laplacians. Then, the representative keypoints are local extrema in the image after the Laplacian operator is applied. The convolution kernels, used for regularization, are extracted from the uniform partition of the image domain, and the graph Laplacian is constructed using the theory of F0-transforms. Empirically, we show that sequences of F-transform kernels that correspond to different regularization levels share the property that they do not introduce new local extrema into the image under convolution. This justifies the computation of keypoints as points where local extrema are reached and allows them to be classified according to the values of the local extrema. We show that the extracted key points are representative in the sense that they allow a good approximate reconstruction of the original image from the calculated components of the F-transform taken from different convolutions. In addition, we show that the proposed algorithm is resistant to Gaussian noise.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Information Processing and Management of Uncertainty in Knowledge-Based Systems

  • ISBN

    978-3-031-08974-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    13

  • Strana od-do

    418-430

  • Název nakladatele

    Springer

  • Místo vydání

  • Místo konání akce

    Milano

  • Datum konání akce

    11. 7. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku