New exotic minimal sets from pseudo-suspensions of Cantor systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2401I39" target="_blank" >RIV/61988987:17610/23:A2401I39 - isvavai.cz</a>
Výsledek na webu
<a href="https://arxiv.org/abs/1609.09121" target="_blank" >https://arxiv.org/abs/1609.09121</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10884-021-10069-3" target="_blank" >10.1007/s10884-021-10069-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New exotic minimal sets from pseudo-suspensions of Cantor systems
Popis výsledku v původním jazyce
We develop a technique, pseudo-suspension, that applies to invariant sets of homeomorphisms of a class of annulus homeomorphisms we describe, Handel–Anosov–Katok (HAK) homeomorphisms, that generalize the homeomorphism first described by Handel. Given a HAK homeomorphism and a homeomorphism of the Cantor set, the pseudo-suspension yields a homeomorphism of a new space that combines features of both of the original homeomorphisms. This allows us to answer a well known open question by providing examples of hereditarily indecomposable continua that admit homeomorphisms with positive finite entropy. Additionally, we show that such examples occur as minimal sets of volume preserving smooth diffeomorphisms of 4-dimensional manifolds.We construct an example of a minimal, weakly mixing and uniformly rigid homeomorphism of the pseudo-circle, and by our method we are also able to extend it to other one-dimensional hereditarily indecomposable continua, thereby producing the first examples of minimal, uniformly rigid and weakly mixing homeomorphisms in dimension 1. We also show that the examples we construct can be realized as invariant sets of smooth diffeomorphisms of a 4-manifold. Until now the only known examples of connected spaces that admit minimal, uniformly rigid and weakly mixing homeomorphisms were modifications of those given by Glasner and Maon in dimension at least 2.
Název v anglickém jazyce
New exotic minimal sets from pseudo-suspensions of Cantor systems
Popis výsledku anglicky
We develop a technique, pseudo-suspension, that applies to invariant sets of homeomorphisms of a class of annulus homeomorphisms we describe, Handel–Anosov–Katok (HAK) homeomorphisms, that generalize the homeomorphism first described by Handel. Given a HAK homeomorphism and a homeomorphism of the Cantor set, the pseudo-suspension yields a homeomorphism of a new space that combines features of both of the original homeomorphisms. This allows us to answer a well known open question by providing examples of hereditarily indecomposable continua that admit homeomorphisms with positive finite entropy. Additionally, we show that such examples occur as minimal sets of volume preserving smooth diffeomorphisms of 4-dimensional manifolds.We construct an example of a minimal, weakly mixing and uniformly rigid homeomorphism of the pseudo-circle, and by our method we are also able to extend it to other one-dimensional hereditarily indecomposable continua, thereby producing the first examples of minimal, uniformly rigid and weakly mixing homeomorphisms in dimension 1. We also show that the examples we construct can be realized as invariant sets of smooth diffeomorphisms of a 4-manifold. Until now the only known examples of connected spaces that admit minimal, uniformly rigid and weakly mixing homeomorphisms were modifications of those given by Glasner and Maon in dimension at least 2.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
J DYN DIFFER EQU
ISSN
1040-7294
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
1175-1201
Kód UT WoS článku
000693352800001
EID výsledku v databázi Scopus
2-s2.0-85114192644