Preservation of properties of residuated algebraic structure by structures for the partial fuzzy set theory
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402HYM" target="_blank" >RIV/61988987:17610/23:A2402HYM - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0888613X22002134" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0888613X22002134</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijar.2022.12.001" target="_blank" >10.1016/j.ijar.2022.12.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Preservation of properties of residuated algebraic structure by structures for the partial fuzzy set theory
Popis výsledku v původním jazyce
This paper addresses the preservation of numerous essential properties of a residuated lattice structure in extended algebras for partial fuzzy set theory and partial fuzzy logics. The preservation includes the residuated lattice axioms, the identities narrowing the classes of the residuated lattices, and some well-known additional properties. In this paper, we consider nine algebras for partial fuzzy logics which incorporate handling undefined values in a bit different way. In particular, we consider the Bochvar, the Bochvar external, the Sobociński, the Kleene, the McCarthy, the Nelson, and the Łukasiewicz algebras, and two recently developed ones, namely the Lower estimation and the Dragonfly algebras. We summarize the obtained results in a comprehensible form which allows readers to easily check the information for the preserved and non-preserved properties in a certain partial algebraic structure. The resulting shape of the contribution is a sort of “atlas book” that aims at providing researchers with a comfortable and comprehensible form of an overview of the (non)preservation of fundamental properties of residuated structures.
Název v anglickém jazyce
Preservation of properties of residuated algebraic structure by structures for the partial fuzzy set theory
Popis výsledku anglicky
This paper addresses the preservation of numerous essential properties of a residuated lattice structure in extended algebras for partial fuzzy set theory and partial fuzzy logics. The preservation includes the residuated lattice axioms, the identities narrowing the classes of the residuated lattices, and some well-known additional properties. In this paper, we consider nine algebras for partial fuzzy logics which incorporate handling undefined values in a bit different way. In particular, we consider the Bochvar, the Bochvar external, the Sobociński, the Kleene, the McCarthy, the Nelson, and the Łukasiewicz algebras, and two recently developed ones, namely the Lower estimation and the Dragonfly algebras. We summarize the obtained results in a comprehensible form which allows readers to easily check the information for the preserved and non-preserved properties in a certain partial algebraic structure. The resulting shape of the contribution is a sort of “atlas book” that aims at providing researchers with a comfortable and comprehensible form of an overview of the (non)preservation of fundamental properties of residuated structures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-07851S" target="_blank" >GA20-07851S: Fuzzy relační struktury v přibližném usuzování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INT J APPROX REASON
ISSN
0888-613X
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
26
Strana od-do
1-26
Kód UT WoS článku
000916282000001
EID výsledku v databázi Scopus
2-s2.0-85144819692