Adaptive inexact iterative algorithms based on polynomial-degree-robust a posteriori estimates for the Stokes problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F18%3A10239484" target="_blank" >RIV/61989100:27120/18:10239484 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/18:10239484 RIV/61989100:27730/18:10239484 RIV/61989100:27740/18:10239484
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00211-017-0925-3" target="_blank" >https://link.springer.com/article/10.1007/s00211-017-0925-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00211-017-0925-3" target="_blank" >10.1007/s00211-017-0925-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive inexact iterative algorithms based on polynomial-degree-robust a posteriori estimates for the Stokes problem
Popis výsledku v původním jazyce
In this paper, we develop adaptive inexact versions of iterative algorithms applied to finite element discretizations of the linear Stokes problem. We base our developments on an equilibrated stress a posteriori error estimate distinguishing the different error components, namely the discretization error component, the (inner) algebraic solver error component, and possibly the outer algebraic solver error component for algorithms of the Uzawa type. We prove that our estimate gives a guaranteed upper bound on the total error, as well as a polynomial-degree-robust local efficiency, and this on each step of the employed iterative algorithm. Our adaptive algorithms stop the iterations when the corresponding error components do not have a significant influence on the total error. The developed framework covers all standard conforming and conforming stabilized finite element methods on simplicial and rectangular parallelepipeds meshes in two or three space dimensions and an arbitrary algebraic solver. Implementation into the FreeFem++ programming language is invoked and numerical examples showcase the performance of our a posteriori estimates and of the proposed adaptive strategies. As example, we choose here the unpreconditioned and preconditioned Uzawa algorithm and the preconditioned minimum residual algorithm, in combination with the Taylor-Hood discretization. (C) 2017 Springer-Verlag GmbH Deutschland
Název v anglickém jazyce
Adaptive inexact iterative algorithms based on polynomial-degree-robust a posteriori estimates for the Stokes problem
Popis výsledku anglicky
In this paper, we develop adaptive inexact versions of iterative algorithms applied to finite element discretizations of the linear Stokes problem. We base our developments on an equilibrated stress a posteriori error estimate distinguishing the different error components, namely the discretization error component, the (inner) algebraic solver error component, and possibly the outer algebraic solver error component for algorithms of the Uzawa type. We prove that our estimate gives a guaranteed upper bound on the total error, as well as a polynomial-degree-robust local efficiency, and this on each step of the employed iterative algorithm. Our adaptive algorithms stop the iterations when the corresponding error components do not have a significant influence on the total error. The developed framework covers all standard conforming and conforming stabilized finite element methods on simplicial and rectangular parallelepipeds meshes in two or three space dimensions and an arbitrary algebraic solver. Implementation into the FreeFem++ programming language is invoked and numerical examples showcase the performance of our a posteriori estimates and of the proposed adaptive strategies. As example, we choose here the unpreconditioned and preconditioned Uzawa algorithm and the preconditioned minimum residual algorithm, in combination with the Taylor-Hood discretization. (C) 2017 Springer-Verlag GmbH Deutschland
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerische Mathematik
ISSN
0029-599X
e-ISSN
—
Svazek periodika
134
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
39
Strana od-do
1-39
Kód UT WoS článku
000428049800008
EID výsledku v databázi Scopus
2-s2.0-85035335409