Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A-posteriori-steered p-robust multigrid with optimal step-sizes and adaptive number of smoothing steps

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00548860" target="_blank" >RIV/67985840:_____/21:00548860 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1137/20M1349503" target="_blank" >https://doi.org/10.1137/20M1349503</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/20M1349503" target="_blank" >10.1137/20M1349503</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A-posteriori-steered p-robust multigrid with optimal step-sizes and adaptive number of smoothing steps

  • Popis výsledku v původním jazyce

    We develop a multigrid solver steered by an a posteriori estimator of the algebraic error. We adopt the context of a second-order elliptic diffusion problem discretized by conforming finite elements of arbitrary polynomial degree p >= 1. Our solver employs zero pre- and one postsmoothing by the overlapping Schwarz (block-Jacobi) method and features an optimal choice of the step-sizes in the smoothing correction on each level by line search. This leads to a simple Pythagorean formula of the algebraic error in the next step in terms of the current error and levelwise and patchwise error reductions. We show the following two results and their equivalence: the solver contracts the algebraic error independently of the polynomial degree p, and the estimator represents a two-sided p-robust bound on the algebraic error.

  • Název v anglickém jazyce

    A-posteriori-steered p-robust multigrid with optimal step-sizes and adaptive number of smoothing steps

  • Popis výsledku anglicky

    We develop a multigrid solver steered by an a posteriori estimator of the algebraic error. We adopt the context of a second-order elliptic diffusion problem discretized by conforming finite elements of arbitrary polynomial degree p >= 1. Our solver employs zero pre- and one postsmoothing by the overlapping Schwarz (block-Jacobi) method and features an optimal choice of the step-sizes in the smoothing correction on each level by line search. This leads to a simple Pythagorean formula of the algebraic error in the next step in terms of the current error and levelwise and patchwise error reductions. We show the following two results and their equivalence: the solver contracts the algebraic error independently of the polynomial degree p, and the estimator represents a two-sided p-robust bound on the algebraic error.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-01074S" target="_blank" >GA20-01074S: Adaptivní metody pro numerické řešení parciálních diferenciálních rovnic: analýza, odhady chyb a iterativní řešiče</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Scientific Computing

  • ISSN

    1064-8275

  • e-ISSN

    1095-7197

  • Svazek periodika

    43

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    29

  • Strana od-do

    "S117"-"S145"

  • Kód UT WoS článku

    000712863700006

  • EID výsledku v databázi Scopus

    2-s2.0-85103871828