Gauge-Optimal Approximate Learning for Small Data Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F24%3A10255906" target="_blank" >RIV/61989100:27120/24:10255906 - isvavai.cz</a>
Výsledek na webu
<a href="https://direct.mit.edu/neco/article-abstract/36/6/1198/120667/Gauge-Optimal-Approximate-Learning-for-Small-Data?redirectedFrom=fulltext" target="_blank" >https://direct.mit.edu/neco/article-abstract/36/6/1198/120667/Gauge-Optimal-Approximate-Learning-for-Small-Data?redirectedFrom=fulltext</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1162/neco_a_01664" target="_blank" >10.1162/neco_a_01664</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gauge-Optimal Approximate Learning for Small Data Classification
Popis výsledku v původním jazyce
Small data learning problems are characterized by a significant discrepancy between the limited number of response variable observations and the large feature space dimension. In this setting, the common learning tools struggle to identify the features important for the classification task from those that bear no relevant information and cannot derive an appropriate learning rule that allows discriminating among different classes. As a potential solution to this problem, here we exploit the idea of reducing and rotating the feature space in a lower-dimensional gauge and propose the gauge-optimal approximate learning (GOAL) algorithm, which provides an analytically tractable joint solution to the dimension reduction, feature segmentation, and classification problems for small data learning problems. We prove that the optimal solution of the GOAL algorithm consists in piecewise-linear functions in the Euclidean space and that it can be approximated through a monotonically convergent algorithm that presents-under the assumption of a discrete segmentation of the feature space-a closed-form solution for each optimization substep and an overall linear iteration cost scaling. The GOAL algorithm has been compared to other state-of-the-art machine learning tools on both synthetic data and challenging real-world applications from climate science and bioinformatics (i.e., prediction of the El Ni & ntilde;o Southern Oscillation and inference of epigenetically induced gene-activity networks from limited experimental data). The experimental results show that the proposed algorithm outperforms the reported best competitors for these problems in both learning performance and computational cost.
Název v anglickém jazyce
Gauge-Optimal Approximate Learning for Small Data Classification
Popis výsledku anglicky
Small data learning problems are characterized by a significant discrepancy between the limited number of response variable observations and the large feature space dimension. In this setting, the common learning tools struggle to identify the features important for the classification task from those that bear no relevant information and cannot derive an appropriate learning rule that allows discriminating among different classes. As a potential solution to this problem, here we exploit the idea of reducing and rotating the feature space in a lower-dimensional gauge and propose the gauge-optimal approximate learning (GOAL) algorithm, which provides an analytically tractable joint solution to the dimension reduction, feature segmentation, and classification problems for small data learning problems. We prove that the optimal solution of the GOAL algorithm consists in piecewise-linear functions in the Euclidean space and that it can be approximated through a monotonically convergent algorithm that presents-under the assumption of a discrete segmentation of the feature space-a closed-form solution for each optimization substep and an overall linear iteration cost scaling. The GOAL algorithm has been compared to other state-of-the-art machine learning tools on both synthetic data and challenging real-world applications from climate science and bioinformatics (i.e., prediction of the El Ni & ntilde;o Southern Oscillation and inference of epigenetically induced gene-activity networks from limited experimental data). The experimental results show that the proposed algorithm outperforms the reported best competitors for these problems in both learning performance and computational cost.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Computation
ISSN
0899-7667
e-ISSN
1530-888X
Svazek periodika
36
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
30
Strana od-do
1198-1227
Kód UT WoS článku
001268217100003
EID výsledku v databázi Scopus
—