Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Gauge-Optimal Approximate Learning for Small Data Classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F24%3A10255906" target="_blank" >RIV/61989100:27120/24:10255906 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://direct.mit.edu/neco/article-abstract/36/6/1198/120667/Gauge-Optimal-Approximate-Learning-for-Small-Data?redirectedFrom=fulltext" target="_blank" >https://direct.mit.edu/neco/article-abstract/36/6/1198/120667/Gauge-Optimal-Approximate-Learning-for-Small-Data?redirectedFrom=fulltext</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1162/neco_a_01664" target="_blank" >10.1162/neco_a_01664</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Gauge-Optimal Approximate Learning for Small Data Classification

  • Popis výsledku v původním jazyce

    Small data learning problems are characterized by a significant discrepancy between the limited number of response variable observations and the large feature space dimension. In this setting, the common learning tools struggle to identify the features important for the classification task from those that bear no relevant information and cannot derive an appropriate learning rule that allows discriminating among different classes. As a potential solution to this problem, here we exploit the idea of reducing and rotating the feature space in a lower-dimensional gauge and propose the gauge-optimal approximate learning (GOAL) algorithm, which provides an analytically tractable joint solution to the dimension reduction, feature segmentation, and classification problems for small data learning problems. We prove that the optimal solution of the GOAL algorithm consists in piecewise-linear functions in the Euclidean space and that it can be approximated through a monotonically convergent algorithm that presents-under the assumption of a discrete segmentation of the feature space-a closed-form solution for each optimization substep and an overall linear iteration cost scaling. The GOAL algorithm has been compared to other state-of-the-art machine learning tools on both synthetic data and challenging real-world applications from climate science and bioinformatics (i.e., prediction of the El Ni &amp; ntilde;o Southern Oscillation and inference of epigenetically induced gene-activity networks from limited experimental data). The experimental results show that the proposed algorithm outperforms the reported best competitors for these problems in both learning performance and computational cost.

  • Název v anglickém jazyce

    Gauge-Optimal Approximate Learning for Small Data Classification

  • Popis výsledku anglicky

    Small data learning problems are characterized by a significant discrepancy between the limited number of response variable observations and the large feature space dimension. In this setting, the common learning tools struggle to identify the features important for the classification task from those that bear no relevant information and cannot derive an appropriate learning rule that allows discriminating among different classes. As a potential solution to this problem, here we exploit the idea of reducing and rotating the feature space in a lower-dimensional gauge and propose the gauge-optimal approximate learning (GOAL) algorithm, which provides an analytically tractable joint solution to the dimension reduction, feature segmentation, and classification problems for small data learning problems. We prove that the optimal solution of the GOAL algorithm consists in piecewise-linear functions in the Euclidean space and that it can be approximated through a monotonically convergent algorithm that presents-under the assumption of a discrete segmentation of the feature space-a closed-form solution for each optimization substep and an overall linear iteration cost scaling. The GOAL algorithm has been compared to other state-of-the-art machine learning tools on both synthetic data and challenging real-world applications from climate science and bioinformatics (i.e., prediction of the El Ni &amp; ntilde;o Southern Oscillation and inference of epigenetically induced gene-activity networks from limited experimental data). The experimental results show that the proposed algorithm outperforms the reported best competitors for these problems in both learning performance and computational cost.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Computation

  • ISSN

    0899-7667

  • e-ISSN

    1530-888X

  • Svazek periodika

    36

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    30

  • Strana od-do

    1198-1227

  • Kód UT WoS článku

    001268217100003

  • EID výsledku v databázi Scopus