Classification with Costly Features Using Deep Reinforcement Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332656" target="_blank" >RIV/68407700:21230/19:00332656 - isvavai.cz</a>
Výsledek na webu
<a href="https://wvvw.aaai.org/ojs/index.php/AAAI/article/view/4287/4165" target="_blank" >https://wvvw.aaai.org/ojs/index.php/AAAI/article/view/4287/4165</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1609/aaai.v33i01.33013959" target="_blank" >10.1609/aaai.v33i01.33013959</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification with Costly Features Using Deep Reinforcement Learning
Popis výsledku v původním jazyce
We study a classification problem where each feature can be acquired for a cost and the goal is to optimize a trade-off between the expected classification error and the feature cost.We revisit a former approach that has framed the problem as a sequential decision-making problem and solved it by Q-learning with a linear approximation, where individual actions are either requests for feature values or terminate the episode by providing a classification decision. On a set of eight problems, we demonstrate that by replacing the linear approximation with neural networks the approach becomes comparable to the state-of-the-art algorithms developed specifically for this problem. The approach is flexible, as it can be improved with any new reinforcement learning enhancement, it allows inclusion of pre-trained high-performance classifier, and unlike prior art, its performance is robust across all evaluated datasets.
Název v anglickém jazyce
Classification with Costly Features Using Deep Reinforcement Learning
Popis výsledku anglicky
We study a classification problem where each feature can be acquired for a cost and the goal is to optimize a trade-off between the expected classification error and the feature cost.We revisit a former approach that has framed the problem as a sequential decision-making problem and solved it by Q-learning with a linear approximation, where individual actions are either requests for feature values or terminate the episode by providing a classification decision. On a set of eight problems, we demonstrate that by replacing the linear approximation with neural networks the approach becomes comparable to the state-of-the-art algorithms developed specifically for this problem. The approach is flexible, as it can be improved with any new reinforcement learning enhancement, it allows inclusion of pre-trained high-performance classifier, and unlike prior art, its performance is robust across all evaluated datasets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence
ISBN
978-1-57735-809-1
ISSN
2159-5399
e-ISSN
—
Počet stran výsledku
8
Strana od-do
3959-3966
Název nakladatele
AAAI Press
Místo vydání
Menlo Park, California
Místo konání akce
Honolulu
Datum konání akce
27. 1. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000485292603120