Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Detection of orbital floor fractures by principal component analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F16%3A86098947" target="_blank" >RIV/61989100:27230/16:86098947 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27240/16:86098947 RIV/61989100:27740/16:86098947 RIV/00843989:_____/16:E0106616

  • Výsledek na webu

    <a href="http://link.springer.com/chapter/10.1007/978-3-319-45378-1_12" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-45378-1_12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-45378-1_12" target="_blank" >10.1007/978-3-319-45378-1_12</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Detection of orbital floor fractures by principal component analysis

  • Popis výsledku v původním jazyce

    Principal component analysis (PCA) is a statistical method based on orthogonal transformation, which is used to convert possibly correlated datasets into linearly uncorrelated variables called principal components. PCA is one of the simplest methods based on the eigenvector analysis. This method is widely used in many fields, such as signal processing, quality control or mechanical engineering. In this paper, we present the use of PCA in area of medical image processing. In the medical image processing with subsequent reconstruction of 3D models, data from sources such as Computed Tomography (CT) or Magnetic Resonance Imagining (MRI) are used. Series of images representing axial slices of human body are stored in Digital Imaging and Communications in Medicine (DICOM) format. Physical properties of different body tissues are characterized by different shades of grey of each pixel correlated to the tissue density. Properties of each pixel are then used in image segmentation and subsequent creation of 3D model of human organs. Image segmentation splits digital image into regions with similar properties which are later used to create 3D model. In many cases accurate detections of edges of such objects are necessary. This could be for example the case of a tumour or orbital fracture identification. In this paper, identification of the orbital fracture using PCA method is presented as an example of application of the method in the area of medical image processing. (C) IFIP International Federation for Information Processing 2016.

  • Název v anglickém jazyce

    Detection of orbital floor fractures by principal component analysis

  • Popis výsledku anglicky

    Principal component analysis (PCA) is a statistical method based on orthogonal transformation, which is used to convert possibly correlated datasets into linearly uncorrelated variables called principal components. PCA is one of the simplest methods based on the eigenvector analysis. This method is widely used in many fields, such as signal processing, quality control or mechanical engineering. In this paper, we present the use of PCA in area of medical image processing. In the medical image processing with subsequent reconstruction of 3D models, data from sources such as Computed Tomography (CT) or Magnetic Resonance Imagining (MRI) are used. Series of images representing axial slices of human body are stored in Digital Imaging and Communications in Medicine (DICOM) format. Physical properties of different body tissues are characterized by different shades of grey of each pixel correlated to the tissue density. Properties of each pixel are then used in image segmentation and subsequent creation of 3D model of human organs. Image segmentation splits digital image into regions with similar properties which are later used to create 3D model. In many cases accurate detections of edges of such objects are necessary. This could be for example the case of a tumour or orbital fracture identification. In this paper, identification of the orbital fracture using PCA method is presented as an example of application of the method in the area of medical image processing. (C) IFIP International Federation for Information Processing 2016.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Computer information systems and industrial management : 15th IFIP TC8 International Conference, CISIM 2016 : Vilnius, Lithuania, September 14-16, 2016 : proceedings

  • ISBN

    978-3-319-45377-4

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    129-138

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Vilnius

  • Datum konání akce

    14. 9. 2016

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku

    000388720000012