Detection of orbital floor fractures by principal component analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F16%3A86098947" target="_blank" >RIV/61989100:27230/16:86098947 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/16:86098947 RIV/61989100:27740/16:86098947 RIV/00843989:_____/16:E0106616
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007/978-3-319-45378-1_12" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-45378-1_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-45378-1_12" target="_blank" >10.1007/978-3-319-45378-1_12</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detection of orbital floor fractures by principal component analysis
Popis výsledku v původním jazyce
Principal component analysis (PCA) is a statistical method based on orthogonal transformation, which is used to convert possibly correlated datasets into linearly uncorrelated variables called principal components. PCA is one of the simplest methods based on the eigenvector analysis. This method is widely used in many fields, such as signal processing, quality control or mechanical engineering. In this paper, we present the use of PCA in area of medical image processing. In the medical image processing with subsequent reconstruction of 3D models, data from sources such as Computed Tomography (CT) or Magnetic Resonance Imagining (MRI) are used. Series of images representing axial slices of human body are stored in Digital Imaging and Communications in Medicine (DICOM) format. Physical properties of different body tissues are characterized by different shades of grey of each pixel correlated to the tissue density. Properties of each pixel are then used in image segmentation and subsequent creation of 3D model of human organs. Image segmentation splits digital image into regions with similar properties which are later used to create 3D model. In many cases accurate detections of edges of such objects are necessary. This could be for example the case of a tumour or orbital fracture identification. In this paper, identification of the orbital fracture using PCA method is presented as an example of application of the method in the area of medical image processing. (C) IFIP International Federation for Information Processing 2016.
Název v anglickém jazyce
Detection of orbital floor fractures by principal component analysis
Popis výsledku anglicky
Principal component analysis (PCA) is a statistical method based on orthogonal transformation, which is used to convert possibly correlated datasets into linearly uncorrelated variables called principal components. PCA is one of the simplest methods based on the eigenvector analysis. This method is widely used in many fields, such as signal processing, quality control or mechanical engineering. In this paper, we present the use of PCA in area of medical image processing. In the medical image processing with subsequent reconstruction of 3D models, data from sources such as Computed Tomography (CT) or Magnetic Resonance Imagining (MRI) are used. Series of images representing axial slices of human body are stored in Digital Imaging and Communications in Medicine (DICOM) format. Physical properties of different body tissues are characterized by different shades of grey of each pixel correlated to the tissue density. Properties of each pixel are then used in image segmentation and subsequent creation of 3D model of human organs. Image segmentation splits digital image into regions with similar properties which are later used to create 3D model. In many cases accurate detections of edges of such objects are necessary. This could be for example the case of a tumour or orbital fracture identification. In this paper, identification of the orbital fracture using PCA method is presented as an example of application of the method in the area of medical image processing. (C) IFIP International Federation for Information Processing 2016.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computer information systems and industrial management : 15th IFIP TC8 International Conference, CISIM 2016 : Vilnius, Lithuania, September 14-16, 2016 : proceedings
ISBN
978-3-319-45377-4
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
10
Strana od-do
129-138
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Vilnius
Datum konání akce
14. 9. 2016
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000388720000012