Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Measure of similarity between gmms by embedding of the parameter space that preserves kl divergence

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F21%3A10247457" target="_blank" >RIV/61989100:27230/21:10247457 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000650558100001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000650558100001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math9090957" target="_blank" >10.3390/math9090957</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Measure of similarity between gmms by embedding of the parameter space that preserves kl divergence

  • Popis výsledku v původním jazyce

    In this work, we deliver a novel measure of similarity between Gaussian mixture models (GMMs) by neighborhood preserving embedding (NPE) of the parameter space, that projects components of GMMs, which by our assumption lie close to lower dimensional manifold. By doing so, we obtain a transformation from the original high-dimensional parameter space, into a much lower-dimensional resulting parameter space. Therefore, resolving the distance between two GMMs is reduced to (taking the account of the corresponding weights) calculating the distance between sets of lower-dimensional Euclidean vectors. Much better trade-off between the recognition accuracy and the computational complexity is achieved in comparison to measures utilizing distances between Gaussian components evaluated in the original parameter space. The proposed measure is much more efficient in machine learning tasks that operate on large data sets, as in such tasks, the required number of overall Gaussian components is always large. Artificial, as well as real-world experiments are conducted, showing much better trade-off between recognition accuracy and computational complexity of the proposed measure, in comparison to all baseline measures of similarity between GMMs tested in this paper. (C) 2021 by the authors. Licensee MDPI, Basel, Switzerland.

  • Název v anglickém jazyce

    Measure of similarity between gmms by embedding of the parameter space that preserves kl divergence

  • Popis výsledku anglicky

    In this work, we deliver a novel measure of similarity between Gaussian mixture models (GMMs) by neighborhood preserving embedding (NPE) of the parameter space, that projects components of GMMs, which by our assumption lie close to lower dimensional manifold. By doing so, we obtain a transformation from the original high-dimensional parameter space, into a much lower-dimensional resulting parameter space. Therefore, resolving the distance between two GMMs is reduced to (taking the account of the corresponding weights) calculating the distance between sets of lower-dimensional Euclidean vectors. Much better trade-off between the recognition accuracy and the computational complexity is achieved in comparison to measures utilizing distances between Gaussian components evaluated in the original parameter space. The proposed measure is much more efficient in machine learning tasks that operate on large data sets, as in such tasks, the required number of overall Gaussian components is always large. Artificial, as well as real-world experiments are conducted, showing much better trade-off between recognition accuracy and computational complexity of the proposed measure, in comparison to all baseline measures of similarity between GMMs tested in this paper. (C) 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10100 - Mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    21

  • Strana od-do

  • Kód UT WoS článku

    000650558100001

  • EID výsledku v databázi Scopus

    2-s2.0-85105307928