An Effective and Secure Mechanism for Phishing Attacks Using a Machine Learning Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10250168" target="_blank" >RIV/61989100:27230/22:10250168 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-9717/10/7/1356/htm" target="_blank" >https://www.mdpi.com/2227-9717/10/7/1356/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/pr10071356" target="_blank" >10.3390/pr10071356</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Effective and Secure Mechanism for Phishing Attacks Using a Machine Learning Approach
Popis výsledku v původním jazyce
Phishing is one of the biggest crimes in the world and involves the theft of the user's sensitive data. Usually, phishing websites target individuals' websites, organizations, sites for cloud storage, and government websites. Most users, while surfing the internet, are unaware of phishing attacks. Many existing phishing approaches have failed in providing a useful way to the issues facing e-mails attacks. Currently, hardware-based phishing approaches are used to face software attacks. Due to the rise in these kinds of problems, the proposed work focused on a three-stage phishing series attack for precisely detecting the problems in a content-based manner as a phishing attack mechanism. There were three input values-uniform resource locators and traffic and web content based on features of a phishing attack and non-attack of phishing website technique features. To implement the proposed phishing attack mechanism, a dataset is collected from recent phishing cases. It was found that real phishing cases give a higher accuracy on both zero-day phishing attacks and in phishing attack detection. Three different classifiers were used to determine classification accuracy in detecting phishing, resulting in a classification accuracy of 95.18%, 85.45%, and 78.89%, for NN, SVM, and RF, respectively. The results suggest that a machine learning approach is best for detecting phishing.
Název v anglickém jazyce
An Effective and Secure Mechanism for Phishing Attacks Using a Machine Learning Approach
Popis výsledku anglicky
Phishing is one of the biggest crimes in the world and involves the theft of the user's sensitive data. Usually, phishing websites target individuals' websites, organizations, sites for cloud storage, and government websites. Most users, while surfing the internet, are unaware of phishing attacks. Many existing phishing approaches have failed in providing a useful way to the issues facing e-mails attacks. Currently, hardware-based phishing approaches are used to face software attacks. Due to the rise in these kinds of problems, the proposed work focused on a three-stage phishing series attack for precisely detecting the problems in a content-based manner as a phishing attack mechanism. There were three input values-uniform resource locators and traffic and web content based on features of a phishing attack and non-attack of phishing website technique features. To implement the proposed phishing attack mechanism, a dataset is collected from recent phishing cases. It was found that real phishing cases give a higher accuracy on both zero-day phishing attacks and in phishing attack detection. Three different classifiers were used to determine classification accuracy in detecting phishing, resulting in a classification accuracy of 95.18%, 85.45%, and 78.89%, for NN, SVM, and RF, respectively. The results suggest that a machine learning approach is best for detecting phishing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Processes
ISSN
2227-9717
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
nestrankovano
Kód UT WoS článku
000833302000001
EID výsledku v databázi Scopus
—