Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An Effective and Secure Mechanism for Phishing Attacks Using a Machine Learning Approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10250168" target="_blank" >RIV/61989100:27230/22:10250168 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2227-9717/10/7/1356/htm" target="_blank" >https://www.mdpi.com/2227-9717/10/7/1356/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/pr10071356" target="_blank" >10.3390/pr10071356</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An Effective and Secure Mechanism for Phishing Attacks Using a Machine Learning Approach

  • Popis výsledku v původním jazyce

    Phishing is one of the biggest crimes in the world and involves the theft of the user&apos;s sensitive data. Usually, phishing websites target individuals&apos; websites, organizations, sites for cloud storage, and government websites. Most users, while surfing the internet, are unaware of phishing attacks. Many existing phishing approaches have failed in providing a useful way to the issues facing e-mails attacks. Currently, hardware-based phishing approaches are used to face software attacks. Due to the rise in these kinds of problems, the proposed work focused on a three-stage phishing series attack for precisely detecting the problems in a content-based manner as a phishing attack mechanism. There were three input values-uniform resource locators and traffic and web content based on features of a phishing attack and non-attack of phishing website technique features. To implement the proposed phishing attack mechanism, a dataset is collected from recent phishing cases. It was found that real phishing cases give a higher accuracy on both zero-day phishing attacks and in phishing attack detection. Three different classifiers were used to determine classification accuracy in detecting phishing, resulting in a classification accuracy of 95.18%, 85.45%, and 78.89%, for NN, SVM, and RF, respectively. The results suggest that a machine learning approach is best for detecting phishing.

  • Název v anglickém jazyce

    An Effective and Secure Mechanism for Phishing Attacks Using a Machine Learning Approach

  • Popis výsledku anglicky

    Phishing is one of the biggest crimes in the world and involves the theft of the user&apos;s sensitive data. Usually, phishing websites target individuals&apos; websites, organizations, sites for cloud storage, and government websites. Most users, while surfing the internet, are unaware of phishing attacks. Many existing phishing approaches have failed in providing a useful way to the issues facing e-mails attacks. Currently, hardware-based phishing approaches are used to face software attacks. Due to the rise in these kinds of problems, the proposed work focused on a three-stage phishing series attack for precisely detecting the problems in a content-based manner as a phishing attack mechanism. There were three input values-uniform resource locators and traffic and web content based on features of a phishing attack and non-attack of phishing website technique features. To implement the proposed phishing attack mechanism, a dataset is collected from recent phishing cases. It was found that real phishing cases give a higher accuracy on both zero-day phishing attacks and in phishing attack detection. Three different classifiers were used to determine classification accuracy in detecting phishing, resulting in a classification accuracy of 95.18%, 85.45%, and 78.89%, for NN, SVM, and RF, respectively. The results suggest that a machine learning approach is best for detecting phishing.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20301 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Processes

  • ISSN

    2227-9717

  • e-ISSN

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    14

  • Strana od-do

    nestrankovano

  • Kód UT WoS článku

    000833302000001

  • EID výsledku v databázi Scopus