A temperature-based synthesis and characterization study of aluminum-incorporated diamond-like carbon thin films
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10253538" target="_blank" >RIV/61989100:27230/23:10253538 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001125724200001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001125724200001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fmech.2023.1325040" target="_blank" >10.3389/fmech.2023.1325040</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A temperature-based synthesis and characterization study of aluminum-incorporated diamond-like carbon thin films
Popis výsledku v původním jazyce
The present work deals with the study of various properties of aluminum (Al)-incorporated diamond-like carbon (DLC) thin films synthesized using the atmospheric pressure chemical vapor deposition (APCVD) technique by varying the deposition temperature (Td) and keeping the N2 flow rate constant. Surface morphology analysis, resistance to corrosion, nanohardness (H), and Young's modulus (E) of the coatings were carried out using atomic force microscopy (AFM), corrosion test, scanning electron microscopy (SEM), and nanoindentation test, respectively. SEM results showed a smoother surface morphology of the coatings grown at different process temperatures. With an increase in process temperature, the coating roughness (Ra) lies in the range of 20-36 mu m. The corrosion resistance of the coating was found to be reduced with a consecutive increase in the deposition temperature from 800celcius to 880celcius. However, above 880celcius, the resistance increases further, and it may be due to the presence of more Al weight percentage in the coating. The nanoindentation result revealed that H and E of the coating increase with an increase in the CVD process temperature. The elastic-plastic property indicated by H/E and H3/E2, which are also indicators of the wear properties of the coating, were studied using the nanoindentation technique. The residual stresses (sigma) calculated using Stoney's equation revealed a reduction in residual stress with an increase in the process temperature.
Název v anglickém jazyce
A temperature-based synthesis and characterization study of aluminum-incorporated diamond-like carbon thin films
Popis výsledku anglicky
The present work deals with the study of various properties of aluminum (Al)-incorporated diamond-like carbon (DLC) thin films synthesized using the atmospheric pressure chemical vapor deposition (APCVD) technique by varying the deposition temperature (Td) and keeping the N2 flow rate constant. Surface morphology analysis, resistance to corrosion, nanohardness (H), and Young's modulus (E) of the coatings were carried out using atomic force microscopy (AFM), corrosion test, scanning electron microscopy (SEM), and nanoindentation test, respectively. SEM results showed a smoother surface morphology of the coatings grown at different process temperatures. With an increase in process temperature, the coating roughness (Ra) lies in the range of 20-36 mu m. The corrosion resistance of the coating was found to be reduced with a consecutive increase in the deposition temperature from 800celcius to 880celcius. However, above 880celcius, the resistance increases further, and it may be due to the presence of more Al weight percentage in the coating. The nanoindentation result revealed that H and E of the coating increase with an increase in the CVD process temperature. The elastic-plastic property indicated by H/E and H3/E2, which are also indicators of the wear properties of the coating, were studied using the nanoindentation technique. The residual stresses (sigma) calculated using Stoney's equation revealed a reduction in residual stress with an increase in the process temperature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Mechanical Engineering - Switzerland
ISSN
2297-3079
e-ISSN
2297-3079
Svazek periodika
9
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
001125724200001
EID výsledku v databázi Scopus
—