Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimální algoritmu pro řešení konvexních úloh kvadratického programování s asymptoticky optimální složitostí

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F07%3A00014975" target="_blank" >RIV/61989100:27240/07:00014975 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An optimal algorithm for a class of equality constrained quadratic programming problems with bounded spectrum

  • Popis výsledku v původním jazyce

    The implementation of the recently proposed semi-monotonic augmented Lagrangian algorithm for the solution of large convex equality constrained quadratic programming problems is considered. It is proved that if the auxiliary problems are approximately solved by the conjugate gradient method, then the algorithm finds an approximate solution of the class of problems with uniformly bounded spectrum of the Hessian matrix at $O(1)$ matrix-vector multiplications. If applied to the class of problems with the Hessian matrices that are in addition either sufficiently sparse or can be be expressed as a product of such sparse matrices, then the cost of the solution is proportional to the dimension of the problems. Theoretical results are illustrated by numericalexperiments.

  • Název v anglickém jazyce

    An optimal algorithm for a class of equality constrained quadratic programming problems with bounded spectrum

  • Popis výsledku anglicky

    The implementation of the recently proposed semi-monotonic augmented Lagrangian algorithm for the solution of large convex equality constrained quadratic programming problems is considered. It is proved that if the auxiliary problems are approximately solved by the conjugate gradient method, then the algorithm finds an approximate solution of the class of problems with uniformly bounded spectrum of the Hessian matrix at $O(1)$ matrix-vector multiplications. If applied to the class of problems with the Hessian matrices that are in addition either sufficiently sparse or can be be expressed as a product of such sparse matrices, then the cost of the solution is proportional to the dimension of the problems. Theoretical results are illustrated by numericalexperiments.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1ET400300415" target="_blank" >1ET400300415: Modelování a simulace náročných technických problémů: efektivní numerické algoritmy a paralelní implementace s pomocí nových informačních technologií</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2007

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computational Optimization and Applications

  • ISSN

    0926-6003

  • e-ISSN

  • Svazek periodika

    38

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    47-59

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus