An optimal algorithm for minimization of quadratic functions with bounded spectrum subject to separable convex inequality and linear equality constraints
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F10%3A86075327" target="_blank" >RIV/61989100:27240/10:86075327 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27600/10:86075327
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An optimal algorithm for minimization of quadratic functions with bounded spectrum subject to separable convex inequality and linear equality constraints
Popis výsledku v původním jazyce
An, in a sense, optimal algorithm for minimization of quadratic functions subject to separable convex inequality and linear equality constraints is presented. Its unique feature is an error bound in terms of bounds on the spectrum of the Hessian of the cost function. If applied to a class of problems with the spectrum of the Hessians in a given positive interval, the algorithm can find approximate solutions in a uniformly bounded number of simple iterations, such as matrix-vector multiplications. Moreover, if the class of problems admits a sparse representation of the Hessian, it simply follows that the cost of the solution is proportional to the number of unknowns. Theoretical results are illustrated by numerical experiments.
Název v anglickém jazyce
An optimal algorithm for minimization of quadratic functions with bounded spectrum subject to separable convex inequality and linear equality constraints
Popis výsledku anglicky
An, in a sense, optimal algorithm for minimization of quadratic functions subject to separable convex inequality and linear equality constraints is presented. Its unique feature is an error bound in terms of bounds on the spectrum of the Hessian of the cost function. If applied to a class of problems with the spectrum of the Hessians in a given positive interval, the algorithm can find approximate solutions in a uniformly bounded number of simple iterations, such as matrix-vector multiplications. Moreover, if the class of problems admits a sparse representation of the Hessian, it simply follows that the cost of the solution is proportional to the number of unknowns. Theoretical results are illustrated by numerical experiments.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F07%2F0294" target="_blank" >GA201/07/0294: Kvalitativní analýza kontaktních úloh se třením a asymptoticky optimální algoritmy pro jejich řešení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM JOURNAL ON OPTIMIZATION
ISSN
1052-6234
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
—
Kód UT WoS článku
000285547100008
EID výsledku v databázi Scopus
—