Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fiktivně oblastní přístup k numerickému řešení PDR definovaných na stochastických oblastech

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F07%3A00014977" target="_blank" >RIV/61989100:27240/07:00014977 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A fictitious domain approach to the numerical solution of PDEs in stochastic domains

  • Popis výsledku v původním jazyce

    We present an efficient method for the numerical realization of elliptic PDEs in domains depending on random variables. The key feature is the combination of a fictitious domain approach and a polynomial chaos expansion. The PDE is solved in a larger, fixed domain (the fictitious domain), with the original boundary condition enforced via a Lagrange multiplier acting on a random manifold inside the new domain. A (generalized) Wiener expansion is invoked to convert such a stochastic problem into a deterministic one, depending on an extra set of real variables (the stochastic variables). Discretization is accomplished by standard mixed finite elements in the physical variables and a Galerkin projection method with numerical integration (which coincides with a collocation scheme) in the stochastic variables. A stability and convergence analysis of the method, as well as numerical results, are provided. The convergence is ``spectral'' in the polynomial chaos order, in any subdomain which do

  • Název v anglickém jazyce

    A fictitious domain approach to the numerical solution of PDEs in stochastic domains

  • Popis výsledku anglicky

    We present an efficient method for the numerical realization of elliptic PDEs in domains depending on random variables. The key feature is the combination of a fictitious domain approach and a polynomial chaos expansion. The PDE is solved in a larger, fixed domain (the fictitious domain), with the original boundary condition enforced via a Lagrange multiplier acting on a random manifold inside the new domain. A (generalized) Wiener expansion is invoked to convert such a stochastic problem into a deterministic one, depending on an extra set of real variables (the stochastic variables). Discretization is accomplished by standard mixed finite elements in the physical variables and a Galerkin projection method with numerical integration (which coincides with a collocation scheme) in the stochastic variables. A stability and convergence analysis of the method, as well as numerical results, are provided. The convergence is ``spectral'' in the polynomial chaos order, in any subdomain which do

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1ET400300415" target="_blank" >1ET400300415: Modelování a simulace náročných technických problémů: efektivní numerické algoritmy a paralelní implementace s pomocí nových informačních technologií</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2007

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Numerische Mathematik

  • ISSN

    0029-599X

  • e-ISSN

  • Svazek periodika

    107

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    GR - Řecká republika

  • Počet stran výsledku

    37

  • Strana od-do

    257-293

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus