Fiktivně oblastní přístup k numerickému řešení PDR definovaných na stochastických oblastech
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F07%3A00014977" target="_blank" >RIV/61989100:27240/07:00014977 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A fictitious domain approach to the numerical solution of PDEs in stochastic domains
Popis výsledku v původním jazyce
We present an efficient method for the numerical realization of elliptic PDEs in domains depending on random variables. The key feature is the combination of a fictitious domain approach and a polynomial chaos expansion. The PDE is solved in a larger, fixed domain (the fictitious domain), with the original boundary condition enforced via a Lagrange multiplier acting on a random manifold inside the new domain. A (generalized) Wiener expansion is invoked to convert such a stochastic problem into a deterministic one, depending on an extra set of real variables (the stochastic variables). Discretization is accomplished by standard mixed finite elements in the physical variables and a Galerkin projection method with numerical integration (which coincides with a collocation scheme) in the stochastic variables. A stability and convergence analysis of the method, as well as numerical results, are provided. The convergence is ``spectral'' in the polynomial chaos order, in any subdomain which do
Název v anglickém jazyce
A fictitious domain approach to the numerical solution of PDEs in stochastic domains
Popis výsledku anglicky
We present an efficient method for the numerical realization of elliptic PDEs in domains depending on random variables. The key feature is the combination of a fictitious domain approach and a polynomial chaos expansion. The PDE is solved in a larger, fixed domain (the fictitious domain), with the original boundary condition enforced via a Lagrange multiplier acting on a random manifold inside the new domain. A (generalized) Wiener expansion is invoked to convert such a stochastic problem into a deterministic one, depending on an extra set of real variables (the stochastic variables). Discretization is accomplished by standard mixed finite elements in the physical variables and a Galerkin projection method with numerical integration (which coincides with a collocation scheme) in the stochastic variables. A stability and convergence analysis of the method, as well as numerical results, are provided. The convergence is ``spectral'' in the polynomial chaos order, in any subdomain which do
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1ET400300415" target="_blank" >1ET400300415: Modelování a simulace náročných technických problémů: efektivní numerické algoritmy a paralelní implementace s pomocí nových informačních technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerische Mathematik
ISSN
0029-599X
e-ISSN
—
Svazek periodika
107
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GR - Řecká republika
Počet stran výsledku
37
Strana od-do
257-293
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—