Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Active learning-based domain adaptive localized polynomial chaos expansion

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU150238" target="_blank" >RIV/00216305:26110/23:PU150238 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0888327023006362?dgcid=author" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0888327023006362?dgcid=author</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ymssp.2023.110728" target="_blank" >10.1016/j.ymssp.2023.110728</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Active learning-based domain adaptive localized polynomial chaos expansion

  • Popis výsledku v původním jazyce

    The paper presents a novel methodology to build surrogate models of complicated functions by an active learning-based sequential decomposition of the input random space and construction of localized polynomial chaos expansions, referred to as domain adaptive localized polynomial chaos expansion (DAL-PCE). The approach utilizes sequential decomposition of the input random space into smaller sub-domains approximated by low-order polynomial expansions. This allows the approximation of functions with strong nonlinearities, discontinuities, and/or singularities that often appear in dynamical systems. Decomposition of the input random space and local approximations alleviates the Gibbs phenomenon for these types of problems and confines error to a very small vicinity near the non-linearity. The global behavior of the surrogate model is therefore significantly better than existing methods, as shown in numerical examples, including an engineering dynamical system exhibiting discontinuous response. The whole process is driven by an active learning routine that uses the recently proposed Theta criterion to assess local variance contributions (Novak et al., 2021). The proposed approach balances both exploitation of the surrogate model and exploration of the input random space and thus leads to efficient and accurate approximation of the original mathematical model. The numerical results show the superiority of the DAL-PCE in comparison to (i) a single global polynomial chaos expansion and (ii) the recently proposed stochastic spectral embedding (SSE) method (Marelli et al., 2021) developed as an accurate surrogate model and which is based on a similar domain decomposition process. This method represents a general framework upon which further extensions and refinements can be based and which can be combined with any technique for non-intrusive polynomial chaos expansion construction.

  • Název v anglickém jazyce

    Active learning-based domain adaptive localized polynomial chaos expansion

  • Popis výsledku anglicky

    The paper presents a novel methodology to build surrogate models of complicated functions by an active learning-based sequential decomposition of the input random space and construction of localized polynomial chaos expansions, referred to as domain adaptive localized polynomial chaos expansion (DAL-PCE). The approach utilizes sequential decomposition of the input random space into smaller sub-domains approximated by low-order polynomial expansions. This allows the approximation of functions with strong nonlinearities, discontinuities, and/or singularities that often appear in dynamical systems. Decomposition of the input random space and local approximations alleviates the Gibbs phenomenon for these types of problems and confines error to a very small vicinity near the non-linearity. The global behavior of the surrogate model is therefore significantly better than existing methods, as shown in numerical examples, including an engineering dynamical system exhibiting discontinuous response. The whole process is driven by an active learning routine that uses the recently proposed Theta criterion to assess local variance contributions (Novak et al., 2021). The proposed approach balances both exploitation of the surrogate model and exploration of the input random space and thus leads to efficient and accurate approximation of the original mathematical model. The numerical results show the superiority of the DAL-PCE in comparison to (i) a single global polynomial chaos expansion and (ii) the recently proposed stochastic spectral embedding (SSE) method (Marelli et al., 2021) developed as an accurate surrogate model and which is based on a similar domain decomposition process. This method represents a general framework upon which further extensions and refinements can be based and which can be combined with any technique for non-intrusive polynomial chaos expansion construction.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20102 - Construction engineering, Municipal and structural engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-00774S" target="_blank" >GA22-00774S: Pravděpodobnostní posouzení v mostním inženýrství za užití náhradního metamodelu (MAPAB)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    MECHANICAL SYSTEMS AND SIGNAL PROCESSING

  • ISSN

    0888-3270

  • e-ISSN

    1096-1216

  • Svazek periodika

    204

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    22

  • Strana od-do

    „“-„“

  • Kód UT WoS článku

    001140284200001

  • EID výsledku v databázi Scopus

    2-s2.0-85171334875