Vše
Vše

Co hledáte?

Vše
Projekty
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A MULTI-SWARM SYNERGETIC OPTIMIZER FOR MULTI-KNOWLEDGE EXTRACTION USING ROUGH SET

Identifikátory výsledku

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A MULTI-SWARM SYNERGETIC OPTIMIZER FOR MULTI-KNOWLEDGE EXTRACTION USING ROUGH SET

  • Popis výsledku v původním jazyce

    Finding reducts is one of the key problems in the increasing applications of rough set theory, which is also one of the bottlenecks of the rough set methodology. The population-based reduction approaches are attractive to find multiple reducts in the decision systems; which could be applied to generate multi-knowledge and to improve decision accuracy. In this paper, we design a multi-swarm synergetic optimization algorithm (MSSO) for rough set reduction and multi-knowledge extraction. It is a multi-swarm based search approach, in which different individual trends to be encoded to different, reduct. The approach discovers the best feature combinations in an efficient way to observe the change of positive region as the particles proceed throughout the search space. The performance of our approach is evaluated and compared with Standard Particle Swarm Optimization (SPSO) and Genetic Algorithms (GA).

  • Název v anglickém jazyce

    A MULTI-SWARM SYNERGETIC OPTIMIZER FOR MULTI-KNOWLEDGE EXTRACTION USING ROUGH SET

  • Popis výsledku anglicky

    Finding reducts is one of the key problems in the increasing applications of rough set theory, which is also one of the bottlenecks of the rough set methodology. The population-based reduction approaches are attractive to find multiple reducts in the decision systems; which could be applied to generate multi-knowledge and to improve decision accuracy. In this paper, we design a multi-swarm synergetic optimization algorithm (MSSO) for rough set reduction and multi-knowledge extraction. It is a multi-swarm based search approach, in which different individual trends to be encoded to different, reduct. The approach discovers the best feature combinations in an efficient way to observe the change of positive region as the particles proceed throughout the search space. The performance of our approach is evaluated and compared with Standard Particle Swarm Optimization (SPSO) and Genetic Algorithms (GA).

Klasifikace

  • Druh

    Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    NEURAL NETWORK WORLD

  • ISSN

    1210-0552

  • e-ISSN

  • Svazek periodika

    20

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    17

  • Strana od-do

  • Kód UT WoS článku

    000281702900006

  • EID výsledku v databázi Scopus

Základní informace

Druh výsledku

Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

Jx

CEP

IN - Informatika

Rok uplatnění

2010