On Convergence of Multi-objective Particle Swarm Optimizers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F10%3A86076850" target="_blank" >RIV/61989100:27240/10:86076850 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Convergence of Multi-objective Particle Swarm Optimizers
Popis výsledku v původním jazyce
Several variants of the Particle Swarm Optimization (PSO) algorithm have been proposed in recent past to tackle the multi-objective optimization problems based on the concept of Pareto optimality. Although a plethora of significant research articles haveso far been published on analysis of the stability and convergence properties of PSO as a single-objective optimizer, till date, to the best of our knowledge, no such analysis exists for the multi-objective PSO (MOPSO) algorithms. This paper presents afirst, simple analysis of the general Pareto-based MOPSO and finds conditions on its most important control parameters (the inertia factor and acceleration coefficients) that control the convergence behavior of the algorithm to the Pareto front in the objective function space. Limited simulation supports have also been provided to substantiate the theoretical derivations.
Název v anglickém jazyce
On Convergence of Multi-objective Particle Swarm Optimizers
Popis výsledku anglicky
Several variants of the Particle Swarm Optimization (PSO) algorithm have been proposed in recent past to tackle the multi-objective optimization problems based on the concept of Pareto optimality. Although a plethora of significant research articles haveso far been published on analysis of the stability and convergence properties of PSO as a single-objective optimizer, till date, to the best of our knowledge, no such analysis exists for the multi-objective PSO (MOPSO) algorithms. This paper presents afirst, simple analysis of the general Pareto-based MOPSO and finds conditions on its most important control parameters (the inertia factor and acceleration coefficients) that control the convergence behavior of the algorithm to the Pareto front in the objective function space. Limited simulation supports have also been provided to substantiate the theoretical derivations.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC)
ISBN
978-1-4244-8126-2
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
—
Název nakladatele
IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA
Místo vydání
NEW YORK
Místo konání akce
Spain
Datum konání akce
18. 7. 2010
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000287375803025