A novel hybrid ABF-PSO algorithm based tuning of optimal FOPI speed controller for PMSM drive
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F11%3A86085193" target="_blank" >RIV/61989100:27240/11:86085193 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/CarpathianCC.2011.5945872" target="_blank" >http://dx.doi.org/10.1109/CarpathianCC.2011.5945872</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CarpathianCC.2011.5945872" target="_blank" >10.1109/CarpathianCC.2011.5945872</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A novel hybrid ABF-PSO algorithm based tuning of optimal FOPI speed controller for PMSM drive
Popis výsledku v původním jazyce
Bacterial Foraging Optimization algorithm (BFOA) has recently emerged as a very powerful technique for real parameter optimization. One of the major driving forces of BFOA is the chemotactic movement of a virtual bacterium that models a trial solution ofoptimization process. In the classical BFOA proposed by Passino, during the process of chemotaxis, optimization depends on a random search direction which may lead to delay in reaching global solution. To accelerate the convergence speed of group of bacteria near global optima the chemotactic step has been made adaptive and the resultant is Adaptive Bacterial Foraging Optimization (ABFO). In order to overcome the delay in optimization and to further enhance the performance of ABFO, this paper proposeda new hybrid algorithm combining the features of Adaptive Bacterial Foraging (ABF) and Particle Swarm Optimization (PSO) for tuning a Fractional order Proportional Integral speed controller in a vector controlled Permanent Magnet Synchron
Název v anglickém jazyce
A novel hybrid ABF-PSO algorithm based tuning of optimal FOPI speed controller for PMSM drive
Popis výsledku anglicky
Bacterial Foraging Optimization algorithm (BFOA) has recently emerged as a very powerful technique for real parameter optimization. One of the major driving forces of BFOA is the chemotactic movement of a virtual bacterium that models a trial solution ofoptimization process. In the classical BFOA proposed by Passino, during the process of chemotaxis, optimization depends on a random search direction which may lead to delay in reaching global solution. To accelerate the convergence speed of group of bacteria near global optima the chemotactic step has been made adaptive and the resultant is Adaptive Bacterial Foraging Optimization (ABFO). In order to overcome the delay in optimization and to further enhance the performance of ABFO, this paper proposeda new hybrid algorithm combining the features of Adaptive Bacterial Foraging (ABF) and Particle Swarm Optimization (PSO) for tuning a Fractional order Proportional Integral speed controller in a vector controlled Permanent Magnet Synchron
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 12th International Carpathian Control Conference ICCC´ 2011
ISBN
978-1-61284-359-9
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
320-325
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
New York
Místo konání akce
Velké Karlovice
Datum konání akce
25. 5. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—