Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automated region of interest retrieval of metallographic images for quality classification in industry

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86084961" target="_blank" >RIV/61989100:27240/12:86084961 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/12:86084961

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automated region of interest retrieval of metallographic images for quality classification in industry

  • Popis výsledku v původním jazyce

    The aim of the research is development and testing of new methods to classify the quality of metallographic samples of steels with high added value (for example grades X70 according API). In this paper, we address the development of methods to classify the quality of slab samples images with the main emphasis on the quality of the image center called as segregation area. For this reason, we introduce an alternative method for automated retrieval of region of interest. In the first step, the metallographic image is segmented using both spectral method and thresholding. Then, the extracted macrostructure of the metallographic image is automatically analyzed by statistical methods. Finally, automatically extracted region of interests are compared with results of human experts. Practical experience with retrieval of non-homogeneous noised digital images in industrial environment is discussed as well.

  • Název v anglickém jazyce

    Automated region of interest retrieval of metallographic images for quality classification in industry

  • Popis výsledku anglicky

    The aim of the research is development and testing of new methods to classify the quality of metallographic samples of steels with high added value (for example grades X70 according API). In this paper, we address the development of methods to classify the quality of slab samples images with the main emphasis on the quality of the image center called as segregation area. For this reason, we introduce an alternative method for automated retrieval of region of interest. In the first step, the metallographic image is segmented using both spectral method and thresholding. Then, the extracted macrostructure of the metallographic image is automatically analyzed by statistical methods. Finally, automatically extracted region of interests are compared with results of human experts. Practical experience with retrieval of non-homogeneous noised digital images in industrial environment is discussed as well.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/FR-TI1%2F432" target="_blank" >FR-TI1/432: *Nové moderní výpočetní metody pro řízení kvality v oblasti výroby náročných jakostí ocelí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advances in Electrical and Electronic Engineering

  • ISSN

    1336-1376

  • e-ISSN

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    SK - Slovenská republika

  • Počet stran výsledku

    7

  • Strana od-do

    51-56

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus