Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Orthophoto Feature Extraction and Clustering

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86085345" target="_blank" >RIV/61989100:27240/12:86085345 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989592:15310/12:33143321

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Orthophoto Feature Extraction and Clustering

  • Popis výsledku v původním jazyce

    In this article we use a combination of neural networks with other techniques for the analysis of orthophotos. Our goal is to obtain results that can serve as a useful groundwork for interactive exploration of the terrain in detail. In our approach we split an aerial photo into a regular grid of segments and for each segment we detect a set of features. These features depict the segment from the viewpoint of a general image analysis (color, tint, etc.) as well as from the viewpoint of the shapes in thesegment. We perform clustering based on the Formal Concept Analysis (FCA) and Non-negative Matrix Factorization (NMF) methods and project the results using effective visualization techniques back to the aerial photo. The FCA as a tool allows users to beinvolved in the exploration of particular clusters by navigation in the space of clusters. In this article we also present two of our own computer systems that support the process of the validation of extracted features using a neural net

  • Název v anglickém jazyce

    Orthophoto Feature Extraction and Clustering

  • Popis výsledku anglicky

    In this article we use a combination of neural networks with other techniques for the analysis of orthophotos. Our goal is to obtain results that can serve as a useful groundwork for interactive exploration of the terrain in detail. In our approach we split an aerial photo into a regular grid of segments and for each segment we detect a set of features. These features depict the segment from the viewpoint of a general image analysis (color, tint, etc.) as well as from the viewpoint of the shapes in thesegment. We perform clustering based on the Formal Concept Analysis (FCA) and Non-negative Matrix Factorization (NMF) methods and project the results using effective visualization techniques back to the aerial photo. The FCA as a tool allows users to beinvolved in the exploration of particular clusters by navigation in the space of clusters. In this article we also present two of our own computer systems that support the process of the validation of extracted features using a neural net

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA205%2F09%2F1079" target="_blank" >GA205/09/1079: Metody umělé inteligence v GIS</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Network World

  • ISSN

    1210-0552

  • e-ISSN

  • Svazek periodika

    22

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    19

  • Strana od-do

    103-121

  • Kód UT WoS článku

    000305103600002

  • EID výsledku v databázi Scopus