Orthophoto Feature Extraction and Clustering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86085345" target="_blank" >RIV/61989100:27240/12:86085345 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/12:33143321
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Orthophoto Feature Extraction and Clustering
Popis výsledku v původním jazyce
In this article we use a combination of neural networks with other techniques for the analysis of orthophotos. Our goal is to obtain results that can serve as a useful groundwork for interactive exploration of the terrain in detail. In our approach we split an aerial photo into a regular grid of segments and for each segment we detect a set of features. These features depict the segment from the viewpoint of a general image analysis (color, tint, etc.) as well as from the viewpoint of the shapes in thesegment. We perform clustering based on the Formal Concept Analysis (FCA) and Non-negative Matrix Factorization (NMF) methods and project the results using effective visualization techniques back to the aerial photo. The FCA as a tool allows users to beinvolved in the exploration of particular clusters by navigation in the space of clusters. In this article we also present two of our own computer systems that support the process of the validation of extracted features using a neural net
Název v anglickém jazyce
Orthophoto Feature Extraction and Clustering
Popis výsledku anglicky
In this article we use a combination of neural networks with other techniques for the analysis of orthophotos. Our goal is to obtain results that can serve as a useful groundwork for interactive exploration of the terrain in detail. In our approach we split an aerial photo into a regular grid of segments and for each segment we detect a set of features. These features depict the segment from the viewpoint of a general image analysis (color, tint, etc.) as well as from the viewpoint of the shapes in thesegment. We perform clustering based on the Formal Concept Analysis (FCA) and Non-negative Matrix Factorization (NMF) methods and project the results using effective visualization techniques back to the aerial photo. The FCA as a tool allows users to beinvolved in the exploration of particular clusters by navigation in the space of clusters. In this article we also present two of our own computer systems that support the process of the validation of extracted features using a neural net
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA205%2F09%2F1079" target="_blank" >GA205/09/1079: Metody umělé inteligence v GIS</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
19
Strana od-do
103-121
Kód UT WoS článku
000305103600002
EID výsledku v databázi Scopus
—