Energy-transfer features and their application in the task of face detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86088599" target="_blank" >RIV/61989100:27240/13:86088599 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6636631" target="_blank" >http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6636631</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/AVSS.2013.6636631" target="_blank" >10.1109/AVSS.2013.6636631</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Energy-transfer features and their application in the task of face detection
Popis výsledku v původním jazyce
In this paper, we describe a novel and interesting approach for extracting the image features. The features we propose are efficient and robust; the feature vectors of relatively small dimensions are sufficient for successful recognition. We call them the energy-transfer features. In contrast, the classical features (e.g. HOG, Haar features) that are combined with the trainable classifiers (e.g. a support vector machine, neural network) require large training sets due to their high dimensionality. The large training sets are difficult to acquire in many cases. In addition to that, the large training sets slow down the training phase. Moreover, the high dimension of feature vector also slows down the detection phase and the methods for the reduction offeature vector must be used. These shortcomings became the motivation for creating the features that are able to describe the object of interest with a relatively small number of numerical values without the use of methods for the reducti
Název v anglickém jazyce
Energy-transfer features and their application in the task of face detection
Popis výsledku anglicky
In this paper, we describe a novel and interesting approach for extracting the image features. The features we propose are efficient and robust; the feature vectors of relatively small dimensions are sufficient for successful recognition. We call them the energy-transfer features. In contrast, the classical features (e.g. HOG, Haar features) that are combined with the trainable classifiers (e.g. a support vector machine, neural network) require large training sets due to their high dimensionality. The large training sets are difficult to acquire in many cases. In addition to that, the large training sets slow down the training phase. Moreover, the high dimension of feature vector also slows down the detection phase and the methods for the reduction offeature vector must be used. These shortcomings became the motivation for creating the features that are able to describe the object of interest with a relatively small number of numerical values without the use of methods for the reducti
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS 2013
ISBN
978-1-4799-0703-8
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
147 - 152
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Krakow
Datum konání akce
27. 8. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—