Energy-transfer features for pedestrian detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86089024" target="_blank" >RIV/61989100:27240/13:86089024 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007%2F978-3-642-41939-3_41" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-642-41939-3_41</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-41939-3_41" target="_blank" >10.1007/978-3-642-41939-3_41</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Energy-transfer features for pedestrian detection
Popis výsledku v původním jazyce
In this paper, we propose an interesting and novel method for computing the image features that are useful for object detection. The method is interesting and novel in the terms of the feature vector dimensionality and object information capturing. In the proposed method, the areas of objects (that contain the important information useful for recognition) are described by the distribution of energy. The energy is transfered through the energy sources that are placed into the image and the distribution of energy is encoded into a vector of features. The vector is then used as an input for the SVM classifier. Using this approach, the objects of interest can be successfully described with a relatively small set of numbers if compared with the state-of-the-art descriptors that are based on the histograms of oriented gradients. We show the robustness of the features in the task of pedestrian detection.
Název v anglickém jazyce
Energy-transfer features for pedestrian detection
Popis výsledku anglicky
In this paper, we propose an interesting and novel method for computing the image features that are useful for object detection. The method is interesting and novel in the terms of the feature vector dimensionality and object information capturing. In the proposed method, the areas of objects (that contain the important information useful for recognition) are described by the distribution of energy. The energy is transfered through the energy sources that are placed into the image and the distribution of energy is encoded into a vector of features. The vector is then used as an input for the SVM classifier. Using this approach, the objects of interest can be successfully described with a relatively small set of numbers if compared with the state-of-the-art descriptors that are based on the histograms of oriented gradients. We show the robustness of the features in the task of pedestrian detection.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science. Volume 8034
ISBN
978-3-642-41938-6
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
10
Strana od-do
425-434
Název nakladatele
Springer Verlag
Místo vydání
London
Místo konání akce
Rethymnon
Datum konání akce
29. 7. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—