Energy based descriptors and their application for car detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86093009" target="_blank" >RIV/61989100:27240/14:86093009 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=HcTRp9Ut%2f8M%3d&t=1" target="_blank" >http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=HcTRp9Ut%2f8M%3d&t=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0004685804920499" target="_blank" >10.5220/0004685804920499</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Energy based descriptors and their application for car detection
Popis výsledku v původním jazyce
In this paper, we propose a novel technique for object description. The proposed method is based on investigation of energy distribution (in the image) that describes the properties of objects. The energy distribution is encoded into a vector of features and the vector is then used as an input for the SVM classifier. Generally, the technique can be used for detecting arbitrary objects. In this paper, however, we demonstrate the robustness of the proposed descriptors for solving the problem of car detection. Compared with the state-of-the-art descriptors (e.g. HOG, Haar-like features), the proposed approach achieved better results, especially from the viewpoint of dimensionality of the feature vector; the proposed approach is able to successfully describe the objects of interest with a relatively small set of numbers without the use of methods for the reduction of feature vector
Název v anglickém jazyce
Energy based descriptors and their application for car detection
Popis výsledku anglicky
In this paper, we propose a novel technique for object description. The proposed method is based on investigation of energy distribution (in the image) that describes the properties of objects. The energy distribution is encoded into a vector of features and the vector is then used as an input for the SVM classifier. Generally, the technique can be used for detecting arbitrary objects. In this paper, however, we demonstrate the robustness of the proposed descriptors for solving the problem of car detection. Compared with the state-of-the-art descriptors (e.g. HOG, Haar-like features), the proposed approach achieved better results, especially from the viewpoint of dimensionality of the feature vector; the proposed approach is able to successfully describe the objects of interest with a relatively small set of numbers without the use of methods for the reduction of feature vector
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
VISAPP 2014 - Proceedings of the 9th International Conference on Computer Vision Theory and Applications
ISBN
978-989-758-003-1
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
492-499
Název nakladatele
SciTePress - Science and Technology Publications
Místo vydání
[Portugalsko]
Místo konání akce
Lisabon
Datum konání akce
5. 1. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—