Similarity analysis of EEG data based on self organizing map neural network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092915" target="_blank" >RIV/61989100:27240/14:86092915 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/14:86092915
Výsledek na webu
<a href="http://advances.utc.sk/index.php/AEEE/article/view/1171" target="_blank" >http://advances.utc.sk/index.php/AEEE/article/view/1171</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15598/aeee.v12i5.1171" target="_blank" >10.15598/aeee.v12i5.1171</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Similarity analysis of EEG data based on self organizing map neural network
Popis výsledku v původním jazyce
The Electroencephalography (EEG) is the recording of electrical activity along the scalp. This recorded data are very complex. EEG has a big role in several applications such as in the diagnosis of human brain diseases and epilepsy. Also, we can use theEEG signals to control an external device via Brain Computer Interface (BCI) by our mind. There are many algorithms to analyse the recorded EEG data, but it still remains one of the big challenges in the world. In this article, we extended our previous proposed method. Our extended method uses Self-organizing Map (SOM) as an EEG data classifier. The proposed method we can divide in following steps: capturing EEG raw data from the sensors, applying filters on this data, we will use the frequencies in therange from 0.5 Hz to 60 Hz, smoothing the data with 15-th order of Polynomial Curve Fitting, converting filtered data into text using Turtle Graphic, Lempel-Ziv complexity for measuring similarity between two EEG data trials and Self-Org
Název v anglickém jazyce
Similarity analysis of EEG data based on self organizing map neural network
Popis výsledku anglicky
The Electroencephalography (EEG) is the recording of electrical activity along the scalp. This recorded data are very complex. EEG has a big role in several applications such as in the diagnosis of human brain diseases and epilepsy. Also, we can use theEEG signals to control an external device via Brain Computer Interface (BCI) by our mind. There are many algorithms to analyse the recorded EEG data, but it still remains one of the big challenges in the world. In this article, we extended our previous proposed method. Our extended method uses Self-organizing Map (SOM) as an EEG data classifier. The proposed method we can divide in following steps: capturing EEG raw data from the sensors, applying filters on this data, we will use the frequencies in therange from 0.5 Hz to 60 Hz, smoothing the data with 15-th order of Polynomial Curve Fitting, converting filtered data into text using Turtle Graphic, Lempel-Ziv complexity for measuring similarity between two EEG data trials and Self-Org
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Electrical and Electronic Engineering
ISSN
1336-1376
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
10
Strana od-do
547-556
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—