Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Similarity analysis of EEG data based on self organizing map neural network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092915" target="_blank" >RIV/61989100:27240/14:86092915 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/14:86092915

  • Výsledek na webu

    <a href="http://advances.utc.sk/index.php/AEEE/article/view/1171" target="_blank" >http://advances.utc.sk/index.php/AEEE/article/view/1171</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.15598/aeee.v12i5.1171" target="_blank" >10.15598/aeee.v12i5.1171</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Similarity analysis of EEG data based on self organizing map neural network

  • Popis výsledku v původním jazyce

    The Electroencephalography (EEG) is the recording of electrical activity along the scalp. This recorded data are very complex. EEG has a big role in several applications such as in the diagnosis of human brain diseases and epilepsy. Also, we can use theEEG signals to control an external device via Brain Computer Interface (BCI) by our mind. There are many algorithms to analyse the recorded EEG data, but it still remains one of the big challenges in the world. In this article, we extended our previous proposed method. Our extended method uses Self-organizing Map (SOM) as an EEG data classifier. The proposed method we can divide in following steps: capturing EEG raw data from the sensors, applying filters on this data, we will use the frequencies in therange from 0.5 Hz to 60 Hz, smoothing the data with 15-th order of Polynomial Curve Fitting, converting filtered data into text using Turtle Graphic, Lempel-Ziv complexity for measuring similarity between two EEG data trials and Self-Org

  • Název v anglickém jazyce

    Similarity analysis of EEG data based on self organizing map neural network

  • Popis výsledku anglicky

    The Electroencephalography (EEG) is the recording of electrical activity along the scalp. This recorded data are very complex. EEG has a big role in several applications such as in the diagnosis of human brain diseases and epilepsy. Also, we can use theEEG signals to control an external device via Brain Computer Interface (BCI) by our mind. There are many algorithms to analyse the recorded EEG data, but it still remains one of the big challenges in the world. In this article, we extended our previous proposed method. Our extended method uses Self-organizing Map (SOM) as an EEG data classifier. The proposed method we can divide in following steps: capturing EEG raw data from the sensors, applying filters on this data, we will use the frequencies in therange from 0.5 Hz to 60 Hz, smoothing the data with 15-th order of Polynomial Curve Fitting, converting filtered data into text using Turtle Graphic, Lempel-Ziv complexity for measuring similarity between two EEG data trials and Self-Org

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advances in Electrical and Electronic Engineering

  • ISSN

    1336-1376

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    10

  • Strana od-do

    547-556

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus