Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Detection of finger flexions based on decision tree

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241738" target="_blank" >RIV/61989100:27240/18:10241738 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-319-60834-1_7" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-60834-1_7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-60834-1_7" target="_blank" >10.1007/978-3-319-60834-1_7</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Detection of finger flexions based on decision tree

  • Popis výsledku v původním jazyce

    Analysis and classification of Electroencephalography (EEG) Data are still a big challenge. This kind if data is very sensitive and complex. EEG data plays a big role not only in medicine. The EEG data can be used as control commands of an external device, e.g. wheelchair, prosthesis, and many others. To do this, we need to establish models which can correctly classify captured EEG data. This paper presents a model based on Butterworth IIR filter, Fast Fourier transform (FFT), Singular Value Decomposition (SVD) and Decision Tree (DT) as a classifier. It can classify finger flexions with accuracy up to 92.241% for three fingers. (C) 2018, Springer International Publishing AG.

  • Název v anglickém jazyce

    Detection of finger flexions based on decision tree

  • Popis výsledku anglicky

    Analysis and classification of Electroencephalography (EEG) Data are still a big challenge. This kind if data is very sensitive and complex. EEG data plays a big role not only in medicine. The EEG data can be used as control commands of an external device, e.g. wheelchair, prosthesis, and many others. To do this, we need to establish models which can correctly classify captured EEG data. This paper presents a model based on Butterworth IIR filter, Fast Fourier transform (FFT), Singular Value Decomposition (SVD) and Decision Tree (DT) as a classifier. It can classify finger flexions with accuracy up to 92.241% for three fingers. (C) 2018, Springer International Publishing AG.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ16-25694Y" target="_blank" >GJ16-25694Y: Mnohoparadigmatické algoritmy dolování z dat založené na vyhledávání, fuzzy technologiích a bio-inspirovaných výpočtech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Advances in intelligent systems and computing. Volume 565

  • ISBN

    978-3-319-60833-4

  • ISSN

    2194-5357

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    11

  • Strana od-do

    57-67

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin

  • Místo konání akce

    Marrákeš

  • Datum konání akce

    21. 11. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku