An improvement of energy-transfer features using DCT for face detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092994" target="_blank" >RIV/61989100:27240/14:86092994 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007%2F978-3-319-07998-1_59" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-07998-1_59</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-07998-1_59" target="_blank" >10.1007/978-3-319-07998-1_59</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An improvement of energy-transfer features using DCT for face detection
Popis výsledku v původním jazyce
The basic idea behind the energy-transfer features (ETF) is that the appearance of objects can be successfully described using the function of energy distribution in the image. This function has to be reduced into a reasonable number of values. These values are then considered as the vector that is used as an input for the SVM classifier. The process of reducing can be simply solved by sampling; the input image is divided into the regular cells and inside each cell, the mean of the values is calculated.In this paper, we propose an improvement of this process; the Discrete Cosine Transform (DCT) coefficients are calculated inside the cells (instead of the mean values) to construct the feature vector. In addition, the DCT coefficients are reduced usingthe Principal Component Analysis (PCA) to create the feature vector with a relatively small dimensionally. The results show that using this approach, the objects can be efficiently encoded with the relatively small set of numbers with pro
Název v anglickém jazyce
An improvement of energy-transfer features using DCT for face detection
Popis výsledku anglicky
The basic idea behind the energy-transfer features (ETF) is that the appearance of objects can be successfully described using the function of energy distribution in the image. This function has to be reduced into a reasonable number of values. These values are then considered as the vector that is used as an input for the SVM classifier. The process of reducing can be simply solved by sampling; the input image is divided into the regular cells and inside each cell, the mean of the values is calculated.In this paper, we propose an improvement of this process; the Discrete Cosine Transform (DCT) coefficients are calculated inside the cells (instead of the mean values) to construct the feature vector. In addition, the DCT coefficients are reduced usingthe Principal Component Analysis (PCA) to create the feature vector with a relatively small dimensionally. The results show that using this approach, the objects can be efficiently encoded with the relatively small set of numbers with pro
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science. Volume 8509
ISBN
978-3-319-07997-4
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
9
Strana od-do
511-519
Název nakladatele
Springer Verlag
Místo vydání
London
Místo konání akce
Cherbourg
Datum konání akce
30. 6. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—