Energy transfer features combined with DCT for object detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86096919" target="_blank" >RIV/61989100:27240/16:86096919 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/article/10.1007%2Fs11760-015-0777-1" target="_blank" >http://link.springer.com/article/10.1007%2Fs11760-015-0777-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11760-015-0777-1" target="_blank" >10.1007/s11760-015-0777-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Energy transfer features combined with DCT for object detection
Popis výsledku v původním jazyce
The basic idea behind the energy transfer features is that the appearance of objects can be described using a function of energy distribution in images. Inside the image, the energy sources are placed and the energy is transferred from the sources during a certain chosen time. The values of energy distribution function have to be reduced into a reasonable number of values. The process of reducing can be simply solved by sampling. The input image is divided into regular cells. The mean value is calculated inside each cell. The values of samples are then considered as a vector that is used as an input for the SVM classifier. We propose an improvement to this process. The discrete cosine transform coefficients are calculated inside the cells (instead of the mean values) to construct the feature vector for the face and pedestrian detectors. To reduce the number of coefficients, we use the patterns in which the coefficients are grouped into regions. In the face detector, the principal component analysis is also used to create the feature vector with a relatively small dimension. The results show that, using this approach, the objects can be efficiently encoded with a relatively short vector with the results that outperform the results of the state-of-the-art detectors.
Název v anglickém jazyce
Energy transfer features combined with DCT for object detection
Popis výsledku anglicky
The basic idea behind the energy transfer features is that the appearance of objects can be described using a function of energy distribution in images. Inside the image, the energy sources are placed and the energy is transferred from the sources during a certain chosen time. The values of energy distribution function have to be reduced into a reasonable number of values. The process of reducing can be simply solved by sampling. The input image is divided into regular cells. The mean value is calculated inside each cell. The values of samples are then considered as a vector that is used as an input for the SVM classifier. We propose an improvement to this process. The discrete cosine transform coefficients are calculated inside the cells (instead of the mean values) to construct the feature vector for the face and pedestrian detectors. To reduce the number of coefficients, we use the patterns in which the coefficients are grouped into regions. In the face detector, the principal component analysis is also used to create the feature vector with a relatively small dimension. The results show that, using this approach, the objects can be efficiently encoded with a relatively short vector with the results that outperform the results of the state-of-the-art detectors.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Signal, Image and Video Processing
ISSN
1863-1703
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
486
Strana od-do
479
Kód UT WoS článku
000370722800009
EID výsledku v databázi Scopus
2-s2.0-84958105066