Applying recurrent fuzzy neural network to predict the Runoff of Srepok River
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86093037" target="_blank" >RIV/61989100:27240/14:86093037 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-662-45237-0_7" target="_blank" >http://dx.doi.org/10.1007/978-3-662-45237-0_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-662-45237-0_7" target="_blank" >10.1007/978-3-662-45237-0_7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Applying recurrent fuzzy neural network to predict the Runoff of Srepok River
Popis výsledku v původním jazyce
Recurrent fuzzy neural network (RFNN) is proven to be a great method for modeling, characterizing and predicting many kinds of nonlinear hydrological time series data such as rainfall, water quality, and river runoff. In our study, we employed RFNN to find out the correlation between the climate data and the runoff of Srepok River in Vietnam and then to model and predict the runoff of Srepok River in the current, as well as in the future. In order to prove the advantage of RFNN, we compare RFNN with anenvironmental model called SWAT on the same dataset. We conduct experiments using the climate data and the daily river's runoff data that have been collected in 22 years, ranging from 1900 to 2011. The experiment results show that the relative error of RFNN is about 0.35 and the relative error of SWAT is 0.44. It means that RFNN outperforms SWAT. Moreover, the most important advantage of RFNN when comparing with SWAT is that RFNN does not need much data as SWAT does. IFIP International F
Název v anglickém jazyce
Applying recurrent fuzzy neural network to predict the Runoff of Srepok River
Popis výsledku anglicky
Recurrent fuzzy neural network (RFNN) is proven to be a great method for modeling, characterizing and predicting many kinds of nonlinear hydrological time series data such as rainfall, water quality, and river runoff. In our study, we employed RFNN to find out the correlation between the climate data and the runoff of Srepok River in Vietnam and then to model and predict the runoff of Srepok River in the current, as well as in the future. In order to prove the advantage of RFNN, we compare RFNN with anenvironmental model called SWAT on the same dataset. We conduct experiments using the climate data and the daily river's runoff data that have been collected in 22 years, ranging from 1900 to 2011. The experiment results show that the relative error of RFNN is about 0.35 and the relative error of SWAT is 0.44. It means that RFNN outperforms SWAT. Moreover, the most important advantage of RFNN when comparing with SWAT is that RFNN does not need much data as SWAT does. IFIP International F
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science. Volume 8838
ISBN
978-3-662-45236-3
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
12
Strana od-do
55-66
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Ho Chi Minh City
Datum konání akce
5. 11. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—