A comparative study of SWAT, RFNN and RFNN-GA for predicting river runoff
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099056" target="_blank" >RIV/61989100:27240/16:86099056 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.indjst.org/index.php/indjst/article/view/92308/69820" target="_blank" >http://www.indjst.org/index.php/indjst/article/view/92308/69820</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17485/ijst/2016/v9i17/92308" target="_blank" >10.17485/ijst/2016/v9i17/92308</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A comparative study of SWAT, RFNN and RFNN-GA for predicting river runoff
Popis výsledku v původním jazyce
Background/Objectives: Data-driven models such as Recurrent Fuzzy Neural Network (RFNN) have been proven to be great methods for modeling, characterizing and predicting various kinds of nonlinear hydrologic time series data such as rainfall, water quality and river runoff. In modeling and predicting river runoff, the most important advantage of datadriven models is that they do not need as much data as do physical models such as the Soil and Water Assessment Tool (SWAT). In Vietnam, most of data which are required by SWAT are not available, thus data-driven models seem to be more suitable for predicting river runoff than SWAT. The objective of this study is to investigate the performance of SWAT, RFNN and an improvement of RFNN (RFNN-GA), which is a hybrid of RFNN and Genetic Algorithm (GA) in predicting the runoff of Srepok River in Central Highland of Vietnam. Methods/Statistical Analysis: Coefficient of correlation (R2) and mean absolute relative error (MARE) are used to analysis and compare the performance of SWAT, RFNN and RFNN-GA. Findings: The experimental results demonstrate that RFNN and RFNN-GA give the performance better than that of SWAT and they are able to be applied to real applications. Among these methods, RFNN-GA is the most superior. Application/Improvements: In the terms of MARE and R2, RFNN-GA improves RFNN 0.9% and 2.2%, respectively; and improves SWAT 27.4% and 12.5%, respectively. RFNN-GA was deployed to predict the runoff of Srepok River in Central Highland of Vietnam.
Název v anglickém jazyce
A comparative study of SWAT, RFNN and RFNN-GA for predicting river runoff
Popis výsledku anglicky
Background/Objectives: Data-driven models such as Recurrent Fuzzy Neural Network (RFNN) have been proven to be great methods for modeling, characterizing and predicting various kinds of nonlinear hydrologic time series data such as rainfall, water quality and river runoff. In modeling and predicting river runoff, the most important advantage of datadriven models is that they do not need as much data as do physical models such as the Soil and Water Assessment Tool (SWAT). In Vietnam, most of data which are required by SWAT are not available, thus data-driven models seem to be more suitable for predicting river runoff than SWAT. The objective of this study is to investigate the performance of SWAT, RFNN and an improvement of RFNN (RFNN-GA), which is a hybrid of RFNN and Genetic Algorithm (GA) in predicting the runoff of Srepok River in Central Highland of Vietnam. Methods/Statistical Analysis: Coefficient of correlation (R2) and mean absolute relative error (MARE) are used to analysis and compare the performance of SWAT, RFNN and RFNN-GA. Findings: The experimental results demonstrate that RFNN and RFNN-GA give the performance better than that of SWAT and they are able to be applied to real applications. Among these methods, RFNN-GA is the most superior. Application/Improvements: In the terms of MARE and R2, RFNN-GA improves RFNN 0.9% and 2.2%, respectively; and improves SWAT 27.4% and 12.5%, respectively. RFNN-GA was deployed to predict the runoff of Srepok River in Central Highland of Vietnam.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Indian journal of science and technology
ISSN
0974-6846
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
17
Stát vydavatele periodika
IN - Indická republika
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84970016395