Neural Networks for Emotion Recognition Based on Eye Tracking Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86099096" target="_blank" >RIV/61989100:27240/15:86099096 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/7379592/" target="_blank" >http://ieeexplore.ieee.org/document/7379592/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SMC.2015.460" target="_blank" >10.1109/SMC.2015.460</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neural Networks for Emotion Recognition Based on Eye Tracking Data
Popis výsledku v původním jazyce
We present an approach for emotion recognition using information of the pupil. In last years, the pupil variables have been used as an assessment of emotional arousal. In this article, we generate signals of pupil size and gaze position monitored during image viewing. The emotions are provoked by visual stimuli of colored images. Those images were taken from the International Affective Picture System which has been the reference for objective emotional assessment based on visual stimuli. For recognising the emotions we use the evolution of the eye tracking data during a window of time. The learning dataset is composed by the evolution of the pupil size and the gaze position, and labels associated to the emotional states. We study two kinds of learning tools based on Neural Networks. We obtain promising empirical results that show the potential of using temporal learning tools for emotion recognition. (C) 2015 IEEE.
Název v anglickém jazyce
Neural Networks for Emotion Recognition Based on Eye Tracking Data
Popis výsledku anglicky
We present an approach for emotion recognition using information of the pupil. In last years, the pupil variables have been used as an assessment of emotional arousal. In this article, we generate signals of pupil size and gaze position monitored during image viewing. The emotions are provoked by visual stimuli of colored images. Those images were taken from the International Affective Picture System which has been the reference for objective emotional assessment based on visual stimuli. For recognising the emotions we use the evolution of the eye tracking data during a window of time. The learning dataset is composed by the evolution of the pupil size and the gaze position, and labels associated to the emotional states. We study two kinds of learning tools based on Neural Networks. We obtain promising empirical results that show the potential of using temporal learning tools for emotion recognition. (C) 2015 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IEEE International conference on systems, man, and cybernetics, SMC 2015 : proceedings
ISBN
978-1-4799-8697-2
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
2632-2637
Název nakladatele
IEEE Computer Society
Místo vydání
Los Alamitos
Místo konání akce
Hongkong
Datum konání akce
9. 10. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000368940202126