A Novel Diagnostic Approach Based on Support Vector Machine with Linear Kernel for classifying the erythemato-squamous disease
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86099386" target="_blank" >RIV/61989100:27240/15:86099386 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ICCUBEA.2015.72D" target="_blank" >http://dx.doi.org/10.1109/ICCUBEA.2015.72D</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCUBEA.2015.72D" target="_blank" >10.1109/ICCUBEA.2015.72D</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Novel Diagnostic Approach Based on Support Vector Machine with Linear Kernel for classifying the erythemato-squamous disease
Popis výsledku v původním jazyce
The diagnosis of the arythema disease is a real difficulty in dermatology. It causes redness induced in the lower level of the skin by hyperemia of the capillaries. It can harm several skin damages, inflammations. In this paper, we have put our efforts to design a diagnostic approach based on Support Vector Machine (SVM) with linear kernel by classifying the erythemato-squamous disease. SVM being a large margin classifier is a powerful pattern recognition and machine learning methodology that is widely used for both linear and non-linear classification problems. Comparing testing on different kernel methods, we have noticed that our method gives the better accuracy. Choosing the optimal value of the parameters is a crucial criterion and this was achieved by performing 3 fold cross-validations. (C) 2015 IEEE.
Název v anglickém jazyce
A Novel Diagnostic Approach Based on Support Vector Machine with Linear Kernel for classifying the erythemato-squamous disease
Popis výsledku anglicky
The diagnosis of the arythema disease is a real difficulty in dermatology. It causes redness induced in the lower level of the skin by hyperemia of the capillaries. It can harm several skin damages, inflammations. In this paper, we have put our efforts to design a diagnostic approach based on Support Vector Machine (SVM) with linear kernel by classifying the erythemato-squamous disease. SVM being a large margin classifier is a powerful pattern recognition and machine learning methodology that is widely used for both linear and non-linear classification problems. Comparing testing on different kernel methods, we have noticed that our method gives the better accuracy. Choosing the optimal value of the parameters is a crucial criterion and this was achieved by performing 3 fold cross-validations. (C) 2015 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings - 1st International Conference on Computing, Communication, Control and Automation, ICCUBEA 2015
ISBN
978-1-4799-6892-3
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
343-347
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
New York
Místo konání akce
Pune
Datum konání akce
26. 2. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000380620000067